scholarly journals Inhibition of Wilms’ Tumor Proliferation and Invasion by Blocking TGF-β Receptor I in the TGF-β/Smad Signaling Pathway

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Qinlin Shi ◽  
Huan Wu ◽  
Yonglin Li ◽  
Lianju Shen ◽  
Xiaomao Tian ◽  
...  

Wilms’ tumor (WT) is a common embryonal tumor, and nephrogenic rests play a critical role in WT development. The transforming growth factor β (TGF-β) signaling pathway is fundamental to embryo development and cell growth and proliferation. Moreover, TGF-β contributes to WT development, but the mechanisms of disease pathogenicity are unknown. This study investigated whether the TGF-β signaling pathway was involved in WT and whether blocking TβRI receptor inhibited WT growth, proliferation, and invasion. A total of 60 WT patients with clinical data and surgical specimens were evaluated. Immunohistochemistry (IHC) was used to detect the expression of TGF-β1 and P-smad2/3. In vitro, the proliferation, migration, apoptosis, and epithelial-mesenchymal transition (EMT) protein expression were analyzed using the CCK8 assay, wound healing assay, transwell assay, flow cytometry, and western blot, respectively. In vivo, tumor morphology, tumor size, toxicity, and EMT protein expression were analyzed in tumor-bearing mice treated with a TβRI kinase inhibitor or PBS. High protein levels of TGF-β1 and P-samd2/3 were associated with clinical stage and metastasis or invasion. TβRI inhibition effectively suppressed WT proliferation and migration and promoted apoptosis in the human WT cell line G401, consequently decreasing EMT protein expression. In addition, the TβRI kinase inhibitor significantly impaired the subcutaneous growth of WT. It is worth noting that treatment with the TβRI kinase inhibitor did not cause liver and kidney injury. Our results indicate that the TGF-β/Smad signaling pathway plays a crucial role in WT progression. Blocking the TβRI receptor may be a novel strategy to treat and prevent WT.

2015 ◽  
Vol 37 (1) ◽  
pp. 43-54 ◽  
Author(s):  
Lu Zhang ◽  
Zhenghong Li ◽  
Weiming He ◽  
Lingdong Xu ◽  
Jing Wang ◽  
...  

Background/Aims: To investigate the effect of Astragaloside IV (AS-IV) on the regulation of the TGF-β1/Smad signaling pathway in peritoneal mesothelial cells with an epithelial-to-mesenchymal transition (EMT). Methods: EMT of human peritoneal mesothelial cells (HMrSV5) was induced using 2 ng/ml TGF-β1. Cells were randomly divided into a vehicle group, a vehicle group with AS-IV, a TGF-β1 treated group, and a TGF-β1 treated group receiving varied doses of AS-IV or NAC. Real-time quantitative PCR and western blot were used to detect the expression of genes and proteins associated with the TGF-β1/Smad signaling pathway and EMT. DCFH-DA was used to detect the generation of ROS in HMrSV5 cells, and a transwell migration assay was used to verify the capacity of AS-IV to inhibit EMT in HMrSV5 cells. Lentiviruses were used as carriers for the overexpression or knockdown of the Smad7 gene. Results: Expression levels of E-cadherin (epithelial marker) was decreased and vimentin, α-SMA (EMT markers) and collagen I (extracellular matrix protein) phospho-Smad2/3, Snail1 and Snail2 was increased significantly in the TGF-β1-treated HMrSV5 cells. AS-IV was associated with downregulated expression of vimentin and phospho-Smad2/3 in a dose-dependent manner, while the expression of Smad7 increased. Silenced or forced expression of Smad7 verified its role in the inhibitory effect of AS-IV on TGF-β1-induced EMT in HMrSV5 cells. Conclusion: AS-IV effectively promotes the upregulation of Smad7 in the TGF-β1/Smad signaling pathway during the EMT of HMrSV5 cells, indicating its potential therapeutic effect for the control of PF.


2021 ◽  
Vol 11 ◽  
Author(s):  
Junshuang Zhao ◽  
Yang Jiang ◽  
Lian Chen ◽  
Yue Ma ◽  
Haiying Zhang ◽  
...  

Glioblastoma (GBM) is a common and refractory subtype of high-grade glioma with a poor prognosis. The epithelial-mesenchymal transition (EMT) is an important cause of enhanced glioblastoma invasiveness and tumor recurrence. Our previous study found that retinoic acid receptor-related orphan receptor A (RORA) is a nuclear receptor and plays an important role in inhibiting proliferation and tumorigenesis of glioma. We further confirmed RORA was downregulated in GBM. Thus, we determined whether RORA was involved in the migration, invasion, and EMT of GBM. Human GBM cell lines, U87 and T98G, and patient-derived glioma stem cells (GSCs), GSC2C and GSC4D, were used for in vitro and in vivo experiments. The expressions of RORA, CASC2, and EIF4A3 in GBM cells and GSCs were detected by RT-qPCR and western blotting. The biological effects of RORA, CASC2, and EIF4A3 on GBM migration, invasion, and EMT were evaluated using the migration assay, transwell assay, immunofluorescence staining, and xenograft experiments. We found that RORA inhibited the migration, invasion, and EMT of GBM. CASC2 could bind to, maintain the stability, and promote the nuclear translocation of RORA protein. EIF4A3 could downregulate CASC2 expression via inducing its cleavage, while RORA transcriptionally inhibited EIF4A3 expression, which formed a feedback loop among EIF4A3/CASC2/RORA. Moreover, gene set enrichment analysis (GSEA) and in vitro and in vivo experiments showed RORA inhibited the aggressiveness of GBM by negatively regulating the TGF-β1/Smad signaling pathway. Therefore, The EIF4A3/CASC2/RORA feedback loop regulated TGF-β1/Smad signaling pathway might become a promising therapeutic strategy for GBM treatment.


2019 ◽  
Vol 249 (1) ◽  
pp. 26-38 ◽  
Author(s):  
Yang Jiang ◽  
Jinpeng Zhou ◽  
Dianqi Hou ◽  
Peng Luo ◽  
Huiling Gao ◽  
...  

2017 ◽  
Vol 43 (1) ◽  
pp. 82-93 ◽  
Author(s):  
Qing Chen ◽  
Wei Yang ◽  
Xixi Wang ◽  
Xueru Li ◽  
Shaopei Qi ◽  
...  

Background/Aims: Transforming growth factor-β1 (TGF-β1) plays a crucial role in chronic inflammation in various tissues, and is related to inflammation-caused organ fibrogenesis associated with the epithelial-mesenchymal transition (EMT) and the deposition of the extracellular matrix (ECM). However, the effect of TGF-β1 on bovine mammary epithelial cells (BMECs) with mastitis, and its mechanism, remain unknown. Methods: We analyzed the level of TGF-β1 in inflamed mammary tissues and cells using western blotting. BMECs were treated with TGF-β1, and EMT-related gene and protein expression changes were evaluated using quantitative real-time polymerase chain reaction (qPCR), western blotting, and immunofluorescence. We also inhibited the TGF/Smad signaling pathway using a receptor inhibitor, and analyzed EMT-related protein expression by western blotting. In addition, we injected TGF-β1 into mice mammary glands to investigate whether it can cause mammary fibrosis in vivo. Results: The TGF-β1 level was up-regulated in mammary tissues with mastitis and in inducible inflammatory BMECs. TGF-β1 treatment activated the TGF/ Smad signaling pathway in BMECs during their transition to the EMT phenotype, as indicated by morphological changes from a cobblestone-like shape to a spindle-like one. TGF-β1 treatment also up-regulated the expression of α-smooth muscle actin, vimentin, and collagen I, albumin, and down-regulated the expression of E-cadherin both in mRNA level and protein level. Furthermore, TGF-β1 enhanced the gene expressions of MMP2, MMP7, and fibronectin in BMECs. TGF-β1 injection induced mice mammary infection and fibrosis. Conclusion: These findings suggested that aberrant up-regulation of TGF-β1 in bovine mastitic mammary glands might play an important role in bovine mammary fibrosis caused by unresolved inflammation.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Huajun Wang ◽  
Guangying Zheng

Abstract Background Abnormal proliferation, metastasis and epithelial-mesenchymal transformation (EMT) of lens epithelial cells (LECs) are direct factors of posterior capsular opacification (PCO). Nuclear enriched abundant transcript 1 (NEAT1) has been shown to promote cell proliferation, metastasis and EMT, but whether it affects the progression of PCO is unclear. Methods The expression of NEAT1, microRNA-486-5p (miR-486-5p) and Drosophila mothers against decapentaplegic 4 (SMAD4) was determined using quantitative real-time polymerase chain reaction (qRT-PCR). The proliferation of cells was measured via 3-(4, 5-dimethyl-2 thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Transwell assay was employed to detect the migration and invasion of cells. The levels of EMT marker proteins, SMAD4 protein and transforming growth factor-β (TGF-β)/SMAD signaling pathway-related proteins were assessed by western blot (WB) analysis. Further, the relationship between miR-486-5p and NEAT1 or SMAD4 was confirmed by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and biotin-labeled RNA pull-down assay. Results NEAT1 is upregulated and miR-486-5p is downregulated in the posterior capsular tissues of PCO patients and TGF-β2-induced LECs. Interference of NEAT1 reverses the promoting effect of TGF-β2 on the proliferation, migration, invasion and EMT of LECs. MiR-486-5p can be sponged by NEAT1, and its inhibitor reverses the suppression effect of NEAT1 silencing on the progression of TGF-β2-induced LECs. SMAD4 functions as a target of miR-486-5p, and its overexpression recovers the inhibition effect of miR-486-5p overexpression on the progression of TGF-β2-induced LECs. The activity of the TGF-β/SMAD signaling pathway is regulated by the NEAT1/miR-486-5p/SMAD4 axis. Conclusion Our study shows that NEAT1 has a positive effect on the progression of PCO and is expected to become a new target for PCO treatment.


Sign in / Sign up

Export Citation Format

Share Document