scholarly journals Identification and Characterization of MAPK Signaling Pathway Genes and Associated lncRNAs in the Ileum of Piglets Infected by Clostridium perfringens Type C

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Ruirui Luo ◽  
Xiaoyu Huang ◽  
Zunqiang Yan ◽  
Xiaoli Gao ◽  
Pengfei Wang ◽  
...  

Clostridium perfringens type C (C. perfringens type C) is one of the main microbial pathogens responsible for piglet diarrhea worldwide, causing substantial economic losses for pig-rearing industries. The mitogen-activated protein kinase (MAPK) signaling pathway is a key regulator of inflammatory bowel disease, especially necrotic enteritis. However, whether and how the MAPK signaling pathway is involved in regulating the process of piglet diarrhea when challenged by C. perfringens type C are still unknown. Here, we screened 38 differentially expressed genes (DEGs) in piglets’ ileum tissues experimentally infected with C. perfringens type C that were enriched in the Sus scrofa MAPK signaling pathway, based on our previous transcriptome data. Of these DEGs, 12 genes (TRAF2, MAPK8, and GADD45G, among others) were upregulated whereas 26 genes (MAPK1, TP53, and CHUK, among others) were downregulated in the infected group. Our results showed that MAPK1, TP53, MAPK8, MYC, and CHUK were in the core nodes of the PPI network. Additionally, we obtained 35 lncRNAs from the sequencing data, which could be trans-targeted to MAPK signaling pathway genes and were differentially expressed in the ileum tissues infected with C. perfringens. We used qRT-PCR to verify the expression levels of genes and lncRNAs related to the MAPK signaling pathway; their expression patterns were consistent with RNA sequencing data. Our results provide strong support for deeply exploring the role of the MAPK signaling pathway in diarrhea caused by C. perfringens type C.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5997 ◽  
Author(s):  
Zunqiang Yan ◽  
Xiaoyu Huang ◽  
Wenyang Sun ◽  
Qiaoli Yang ◽  
Hairen Shi ◽  
...  

Background Clostridium perfringens (C. perfringens) type C is the most common bacteria causing piglet diarrheal disease and it greatly affects the economy of the global pig industry. The spleen is an important immune organ in mammals; it plays an irreplaceable role in resisting and eradicating pathogenic microorganisms. Based on different immune capacity in piglets, individuals display the resistance and susceptibility to diarrhea caused by C. perfringens type C. Recently, long non-coding RNA (lncRNA) and mRNA have been found to be involved in host immune and inflammatory responses to pathogenic infections. However, little is known about spleen transcriptome information in piglet diarrhea caused by C. perfringens type C. Methods Hence, we infected 7-day-old piglets with C. perfringens type C to lead to diarrhea. Then, we investigated lncRNA and mRNA expression profiles in spleens of piglets, including control (SC), susceptible (SS), and resistant (SR) groups. Results As a result, 2,056 novel lncRNAs and 2,417 differentially expressed genes were found. These lncRNAs shared the same characteristics of fewer exons and shorter length. Bioinformatics analysis identified that two lncRNAs (ALDBSSCT0000006918 and ALDBSSCT0000007366) may be involved in five immune/inflammation-related pathways (such as Toll-like receptor signaling pathway, MAPK signaling pathway, and Jak-STAT signaling pathway), which were associated with resistance and susceptibility to C. perfringens type C infection. This study contributes to the understanding of potential mechanisms involved in the immune response of piglets infected with C. perfringens type C.


2020 ◽  
Author(s):  
Dawei Zhang ◽  
Wenjing Wu ◽  
Xin Huang ◽  
Ke Xu ◽  
Cheng Zheng ◽  
...  

Abstract Background: Chinese domestic pig breeds are reputed for pork quality, but their low ratio of lean-to-fat carcass weight decreases production efficiency. A better understanding of the genetic regulation network of SC fat tissue is necessary for the rational selection of Chinese domestic pig breeds. In the present study, SC adipocytes were isolated from Jiaxing Black pigs (a Chinese indigenous pig breed with redundant SC fat deposition) and Large White pigs (a lean-type pig breed with relatively low SC fat deposition) and the expression profiles of mRNAs and lncRNAs were compared by RNA-seq analysis to identify biomarkers correlated with the differences of SC fat deposition between the two breeds.Results: A total of 3,371 differentially expressed genes (DEGs) and 1,182 differentially expressed lncRNAs (DELs) were identified in SC adipocytes between Jiaxing Black (JX) and Large White (LW) pigs, which included 797 upregulated mRNAs, 2,574 downregulated mRNAs, 461 upregulated lncRNAs and 721 downregulated lncRNAs. Gene Ontology and KEGG pathway analyses revealed that the DEGs and DELs were mainly involved in the immune response, cell fate determination, PI3K-Akt signaling pathway and MAPK signaling pathway, which are known to be related to adipogenesis and lipid metabolism. The expression levels of DEGs and DELs according to the RNA-seq data were verified by quantitative PCR, which showed 81.8% consistency. The differences in MAPK pathway activity between JX and LW pigs was confirmed by western blot analysis, with <100-fold elevated p38 phosphorylation in JX pigs.Conclusions: This study offers a detailed characterization of mRNAs and lncRNAs in fat- and lean-type pig breeds. The activity of the MAPK signaling pathway was found to be associated with subcutaneous adipogenesis. These results greatly enhance our understanding of the molecular mechanisms regulating SC fat deposition in pigs.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Chao Bai ◽  
Wenwen Yang ◽  
Yao Lu ◽  
Wei Wei ◽  
Zongbao Li ◽  
...  

This study is to identify the circular RNA (circRNA) expression profile that is functionally related to pancreatic islet β-cell autophagy and their potential regulation mechanisms in type 2 diabetes mellitus (T2DM). T2DM rat model was constructed by administration of high-fat and high-sugar diet. β-cells were isolated from islets by flow cytometry. CircRNA expression profile in β-cells was detected by circRNA microarrays, and the differentially expressed circRNAs were identified and validated by qRT-PCR. MicroRNA (miRNA) target prediction software and multiple bioinformatic approaches were used to construct a map of circRNA-miRNA interactions for the differentially expressed circRNAs. A total of 825 differentially expressed circular transcripts were identified in T2DM rats compared with control rats, among which 388 were upregulated and 437 were downregulated. Ten circRNAs were identified to have significant differences by qRT-PCR. GO analysis enriched terms such as organelle membrane and protein binding and the top enriched pathways for the circRNAs included MAPK signaling pathway. The differentially expressed circRNAs might involve in MAPK signaling pathway, apoptosis, and Ras signaling pathway. We speculate that these circRNAs, especially rno_circRNA_008565, can regulate the autophagy of islet β-cells via interactions with miRNA. Dysregulation of several circRNAs may play a role in T2DM development, and rno_circRNA_008565 may be a potential regulator of β-cell autophagy.


2018 ◽  
Vol 50 (8) ◽  
pp. 636-647 ◽  
Author(s):  
Yujia Yang ◽  
Qiang Fu ◽  
Xiaozhu Wang ◽  
Yang Liu ◽  
Qifan Zeng ◽  
...  

Channel catfish is the leading aquaculture species in the US, and one of the reasons for its application in aquaculture is its relatively high tolerance against hypoxia. However, hypoxia can still cause huge economic losses to the catfish industry. Studies on hypoxia tolerance, therefore, are important for aquaculture. Fish swimbladder has been considered as an accessory respiration organ surrounded by a dense capillary countercurrent exchange system. In this regard, we conducted RNA-Seq analysis with swimbladder samples of catfish under hypoxic and normal conditions to determine if swimbladder was responsive to low oxygen treatment and to reveal genes, their expression patterns, and pathways involved in hypoxia responses in catfish. A total of 155 differentially expressed genes (DEGs) were identified from swimbladder of adult catfish, whereas a total of 2,127 DEGs were identified from swimbladder of fingerling catfish under hypoxic condition as compared with untreated controls. Subsequent pathway analysis revealed that many DEGs under hypoxia were involved in HIF signaling pathway ( nos2, eno2, camk2d2, prkcb, cdkn1a, eno1, and tfrc), MAPK signaling pathway (voltage-dependent calcium channel subunit genes), PI3K/Akt/mTOR signaling pathway ( itga6, g6pc, and cdkn1a), Ras signaling pathway ( efna3 and ksr2), and signaling by VEGF ( fn1, wasf3, and hspb1) in catfish swimbladder. This study provided insights into regulation of gene expression and their involved gene pathways in catfish swimbladder in response to low oxygen stresses.


2019 ◽  
Vol 15 (7) ◽  
pp. 1401-1414 ◽  
Author(s):  
Yan Huang ◽  
Xiaoying Lü ◽  
Xiaoqiang Lü

The aim of this study was to investigate the toxic mechanism for differently sized silver nanoparticles (SNPs) on human dermal fibroblasts (HDFs), by combining high content cellomics and transcriptome sequencing. First, the influences of five SNPs (SNP-5, SNP-20, SNP-50, SNP-100, and SNP-200) on O–2, focal adhesion, cytoskeleton and ATP content in HDFs were studied with high content screening and colorimetric method, and the role to cytotoxicity was analysed. Transcriptome sequencing technique was then to filter differentially expressed genes induced by SNPs after 4 h treatment. Key pathways in SNP-induced cytotoxicity were also screened via biological pathway analysis. Furthermore, key genes in HDFs after SNP-induced cytotoxicity were determined through matching analysis with previously obtained important microRNAs and their expression levels were verified with qRT-PCR. Cytological experiments showed that the SNP-5 had the strongest effects on O–2, focal adhesion, cytoskeleton and ATP content, while SNP-20 had the smallest effects. Transcriptome sequencing results showed that 3848, 4213, 2999, 3251 and 5104 genes were found to be differentially expressed in HDFs after treatment with five SNPs. Biological pathway analysis for 1643 uniformly differentially expressed genes revealed that MAPK signaling pathway was the key pathway in SNP-induced cytotoxicity. Two key genes, SOS1 and CDC25B, which are involved in MAPK signaling pathway were finally identified through matching analysis with important microRNAs and verification. In conclusion, the cytotoxic mechanism for SNPs induced cytotoxicity in HDFs involved SNPs down-regulated expression of SOS1 and CDC25B through miR-424-5p in the key MAPK signaling pathway, through blocking of cell cycle, promotion of apoptosis, ultimately leading to cytotoxicity.


2019 ◽  
Vol 32 (12) ◽  
pp. 1327-1339 ◽  
Author(s):  
Rui Chen ◽  
Guangda Xin ◽  
Xiaofei Zhang

Abstract Background This study aimed to investigate the completing endogenous RNA (ceRNA) network involved in childhood obesity. Methods The microarray dataset GSE9624 was downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed long non-coding RNAs (lncRNAs) (DELs) and messenger RNAs (DEMs) were isolated between the childhood obesity and non-obesity tissue samples. Then, Gene Ontology (GO) functional and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of isolated DEMs were performed. DELs and DEMs targeted miRNAs were predicted to construct a ceRNA regulatory network. Finally, critical lncRNAs were validated in another dataset. Results A total of 1257 differentially expressed RNAs were screened, including 28 lncRNAs and 1229 mRNAs. In addition, these RNAs were mainly involved in defense response, cell cycle, mitogen-activated protein kinase (MAPK) signaling pathway, apoptosis, etc. Three lncRNAs (human leukocyte antigen complex 5 [HCP5], long intergenic non-protein coding RNA 839 [LINC00839] and receptor activity modifying protein 2 [RAMP2-AS1]) and two related miRNAs (hsa-miR-17-5p and hsa-miR-27a/b-3p) were identified as key RNAs in childhood obesity. Specifically, lncRNA HCP5 interacted with miR-17-5p and miR-27a/b to regulate nemo-like kinase (NLK) and Ras-related protein 2 (RRAS2) via the MAPK signaling pathway. Finally, four genes (RRAS2, NLK, bcl2/adenovirus E1B protein-interacting protein 3 [BNIP3] and phorbol-12-myristate-13-acetate-induced protein 1 [PMAIP1]) targeted by miRNAs were predicted as critical genes and might be novel diagnostic biomarkers of childhood obesity. Conclusions lncRNA HCP5 could serve as a ceRNA sponging miR-17-5p and miR-27a/b to regulate the pathogenesis of childhood obesity via NLK and RRAS2 in the MAPK signaling pathway.


2018 ◽  
Vol 46 (3) ◽  
pp. 1209-1217 ◽  
Author(s):  
Lin Luo ◽  
Lin-Dan Ji ◽  
Jiang-Jia Cai ◽  
Mei Feng ◽  
Mi Zhou ◽  
...  

Background/Aims: Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus (DM). Because of its controversial pathogenesis, DPN is still not diagnosed or managed properly in most patients. Methods: In this study, human lncRNA microarrays were used to identify the differentially expressed lncRNAs in DM and DPN patients, and some of the discovered lncRNAs were further validated in additional 78 samples by quantitative realtime PCR (qRT-PCR). Results: The microarray analysis identified 446 and 1327 differentially expressed lncRNAs in DM and DPN, respectively. The KEGG pathway analysis further revealed that the differentially expressed lncRNA-coexpressed mRNAs between DPN and DM groups were significantly enriched in the MAPK signaling pathway. The lncRNA/mRNA coexpression network indicated that BDNF and TRAF2 correlated with 6 lncRNAs. The qRT-PCR confirmed the initial microarray results. Conclusion: These findings demonstrated that the interplay between lncRNAs and mRNA may be involved in the pathogenesis of DPN, especially the neurotrophin-MAPK signaling pathway, thus providing relevant information for future studies.


2020 ◽  
Vol 19 (4) ◽  
pp. 248-256
Author(s):  
Yangmin Zheng ◽  
Ziping Han ◽  
Haiping Zhao ◽  
Yumin Luo

Conclusion: Stroke is a complex disease caused by genetic and environmental factors, and its etiological mechanism has not been fully clarified yet, which brings great challenges to its effective prevention and treatment. MAPK signaling pathway regulates gene expression of eukaryotic cells and basic cellular processes such as cell proliferation, differentiation, migration, metabolism and apoptosis, which are considered as therapeutic targets for many diseases. Up to now, mounting evidence has shown that MAPK signaling pathway is involved in the pathogenesis and development of ischemic stroke. However, the upstream kinase and downstream kinase of MAPK signaling pathway are complex and the influencing factors are numerous, the exact role of MAPK signaling pathway in the pathogenesis of ischemic stroke has not been fully elucidated. MAPK signaling molecules in different cell types in the brain respond variously after stroke injury, therefore, the present review article is committed to summarizing the pathological process of different cell types participating in stroke, discussed the mechanism of MAPK participating in stroke. We further elucidated that MAPK signaling pathway molecules can be used as therapeutic targets for stroke, thus promoting the prevention and treatment of stroke.


Neoplasia ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 607-623
Author(s):  
Hui Xu ◽  
Xiaomei Yang ◽  
Xiaofeng Xuan ◽  
Di Wu ◽  
Jieru Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document