scholarly journals Laboratory Evaluation and Design of Construction and Demolition Wastes for Granular Base

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jin Yi ◽  
Chenghao Liang ◽  
Junfeng Qian ◽  
Jue Li ◽  
Yongsheng Yao

Using recycled aggregate from construction and demolition (C&D) wastes as a construction material is a potential method for solving the disposal of C&D wastes, which can reduce the exploitation of natural aggregate. In this study, extensive laboratory tests were carried out to investigate the reliability of the C&D wastes used as road base material. Meanwhile, the gradation design and the dominant aggregate size range were considered, and a physical disposal method was proposed to enhance the structural performance of the recycled material by replacing the skeleton of the recycled aggregate (RA) with high-quality limestone. The test results showed that (1) given the high absorbency and fragility of C&D wastes, its RA was not enough to provide the strength and stability required by the base; (2) the compaction characteristics of the RA are quite different from that of the limestone aggregate, but the final compaction effect is basically the same; (3) the replacement treatment proposed in this study is an effective approach to improve the performance of the recycled granular base because the breakage rate decreased by at least 28.2% and the mechanical properties increased by approximately 50% compared with that of the untreated specimen; and (4) when the limestone content reached 75%, the California bearing ratio and the resilient modulus of the graded B specimen exceeded 120% and 200 MPa, respectively, satisfying the pavement requirement in medium traffic.

Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 556
Author(s):  
Muhammad Faisal Javed ◽  
Afaq Ahmad Durrani ◽  
Sardar Kashif Ur Rehman ◽  
Fahid Aslam ◽  
Hisham Alabduljabbar ◽  
...  

Numerous research studies have been conducted to improve the weak properties of recycled aggregate as a construction material over the last few decades. In two-stage concrete (TSC), coarse aggregates are placed in formwork, and then grout is injected with high pressure to fill up the voids between the coarse aggregates. In this experimental research, TSC was made with 100% recycled coarse aggregate (RCA). Ten percent and twenty percent bagasse ash was used as a fractional substitution of cement along with the RCA. Conventional concrete with 100% natural coarse aggregate (NCA) and 100% RCA was made to determine compressive strength only. Compressive strength reduction in the TSC was 14.36% when 100% RCA was used. Tensile strength in the TSC decreased when 100% RCA was used. The increase in compressive strength was 8.47% when 20% bagasse ash was used compared to the TSC mix that had 100% RCA. The compressive strength of the TSC at 250 °C was also determined to find the reduction in strength at high temperature. Moreover, the compressive and tensile strength of the TSC that had RCA was improved by the addition of bagasse ash.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 325
Author(s):  
Giada Giuffrida ◽  
Maurizio Detommaso ◽  
Francesco Nocera ◽  
Rosa Caponetto

The renewed attention paid to raw earth construction in recent decades is linked to its undoubted sustainability, cost-effectiveness, and low embodied energy. In Italy, the use of raw earth as a construction material is limited by the lack of a technical reference standard and is penalised by the current energy legislation for its massive behaviour. Research experiences, especially transoceanic, on highly performative contemporary buildings made with natural materials show that raw earth can be used, together with different types of reinforcements, to create safe, earthquake-resistant, and thermally efficient buildings. On the basis of experimental data of an innovative fibre-reinforced rammed earth material, energy analyses are developed on a rammed earth building designed for a Mediterranean climate. The paper focuses on the influences that different design solutions, inspired by traditional bioclimatic strategies, and various optimised wall constructions have in the improvement of the energy performance of the abovementioned building. These considerations are furthermore compared with different design criteria aiming at minimising embodied carbon in base material choice, costs, and discomfort hours. Results have shown the effectiveness of using the combination of massive rammed earth walls, night cross ventilation, and overhangs for the reduction of energy demand for space cooling and the improvement of wellbeing. Finally, the parametric analysis of thermal insulation has highlighted the economic, environmental, and thermophysical optimal solutions for the rammed earth envelope.


2013 ◽  
Vol 594-595 ◽  
pp. 503-510
Author(s):  
T.I.T. Noor Hasanah ◽  
D.C. Wijeyesekera ◽  
Ismail bin Bakar ◽  
Wahab Saidin

Applications of lightweight construction materials enable the design and construction in challenging, difficult and demanding scenarios. Construction materials with enhanced stiffness as in sandwich panels, large portable structures and floating foundations are examples of such materials. The advent of cellular structure technology has actively introduced innovation and enabled design and construction, meeting engineering requirements such as in the construction of the body of air crafts. Cellular mat structures present in the minimum, triple benefits in being lightweight, load sharing and minimising non-uniform deformation. This paper further explores the use of recycled plastic waste as the base material for an innovative geomaterial. The combination of cellular structure, mat structure and use of recycled waste material is a desirable development in manufacturing. Paper also outlines the techno social benefit of adopting such material in construction. Other application-specific benefits related to cellular mats are those like noise reduction, energy absorption, thermal insulation, mechanical damping. This paper specifically presents the development of a new multifunctional lightweight material is been proposed as an invective innovation for highway construction on challenging ground condition.


Author(s):  
K. D. Eigenbrod ◽  
G. J. A. Kennepohl

A unique mechanism based on extensive field and laboratory studies is presented to account for certain premature failures of flexible pavements in cold areas like those in Scandinavia and in northern parts of Canada and the United States. Water condensing at the interface between pavement and granular base accumulates at subzero temperatures resulting in excess moisture in this zone. During the thaw period of the uppermost base layer, the excess water in the aggregate is trapped between impervious layers of frozen ground to the sides and below as well as an impervious layer of asphalt pavement above. Because of this containment, high pore water pressures can occur, leading to loss in shear strength of the base material and thus to failure of the pavement structure itself. It was found that under special conditions, excess moisture can accumulate in granular base with a silt content greater than 20 percent and very high pore water pressures can develop during initial thaw at the pavement-soil interface. With silt contents of less than 2 percent, excess pore water pressures can be avoided during thaw. It was also shown that when a clean open gravel is placed below the pavement on top of a silty base material, moisture accumulation near the pavement-base interface can be prevented, and thus also the development of high pore water pressures.


Author(s):  
Zainab Ahmed Alkaissi ◽  
Hassan Adnan

The estimation of elastic modulus for road bases is the primary objective of this research which is implemented a significant role in transmitting the vertical loading to the pavement foundation layers. In this study, the effect of weathering conditions on the stiffness of base course is investigated and implied the durability test by subjecting the prepared samples to a different numbers of wet-dry cycles (0,2, 4, 6, 8 and 10). A conventional base materials of local natural gravel aggregate and treated base materials with recycled concrete aggregate RCA at different percentages (0%, 25%, 50% 75% and 100%) is adopted in this research. The elastic characteristics are estimated in terms of elastic modulus. Elastic modulus are estimated by passing the ultrasonic pulse velocity through the untreated and treated base materials laboratory specimens. This test can be used to study the elastic modulus properties of base materials. A multiple linear regression analysis is used for prediction the elastic modulus using the SPSS (software ver.21). Elastic Modulus (kPa) is the dependent variable whereas the independent variable are; No. of wet- dry cycle and Percent (%) of RCA stabilizer. The obtained results for elastic modulus (Es) of granular base material layer showed increasing in elastic modulus with percentage of RCA%., results revealed that the (Es) values reached a maximum value of (6927kPa) for 100%. For the OMC’s values increases due to the percentage increment of RCA in granular base material mixture, this increment in water contents is refer to high absorption capacity of the paste clinging to the RCA. On other side the dry density decrease gradually with adding percentage of (RCA) in granular base material mixture.


Author(s):  
Tongyan Pan ◽  
Erol Tutumluer ◽  
Samuel H. Carpenter

The resilient modulus measured in the indirect tensile mode according to ASTM D 4123 reflects effectively the elastic properties of asphalt mixtures under repeated load. The coarse aggregate morphology quantified by angularity and surface texture properties affects resilient modulus of asphalt mixes; however, the relationship is not yet well understood because of the lack of quantitative measurement of coarse aggregate morphology. This paper presents findings of a laboratory study aimed at investigating the effects of the material properties of the major component on the resilient modulus of asphalt mixes, with the coarse aggregate morphology considered as the principal factor. With modulus tests performed at a temperature of 25°C, using coarse aggregates with more irregular morphologies substantially improved the resilient modulus of asphalt mixtures. An imaging-based angularity index was found to be more closely related to the resilient modulus than an imaging-based surface texture index, as indicated by a higher value of the correlation coefficient. The stiffness of the asphalt binder also had a strong influence on modulus. When the resilient modulus data were grouped on the basis of binder stiffnesses, the agreement between the coarse aggregate morphology and the resilient modulus was significantly improved in each group. Although the changes in aggregate gradation did not significantly affect the relationship between the coarse aggregate morphology and the resilient modulus, decreasing the nominal maximum aggregate size from 19 mm to 9.5 mm indicated an increasing positive influence of aggregate morphology on the resilient modulus of asphalt mixes.


2018 ◽  
Vol 10 (8) ◽  
pp. 2590 ◽  
Author(s):  
Debora Acosta Alvarez ◽  
Anadelys Alonso Aenlle ◽  
Antonio Tenza-Abril

Recycled Aggregates (RA) from construction and demolition waste (CDW) are a technically viable alternative to manufacture of asphalt concrete (AC). The main objective of this work is to evaluate the properties of hot asphalt mixtures that have been manufactured with different sources of CDW (material from concrete test specimens, material from the demolition of sidewalks and waste from prefabrication plants) from Cuba. Dense asphalt mixtures were manufactured with a maximum aggregate size of 19 mm, partially replacing (40%) the natural aggregate fraction measured between 5 mm and 10 mm with three types of RA from Cuba. Marshall specimens were manufactured to determine the main properties of the AC in terms of density, voids, stability and deformation. Additionally, the stiffness modulus of the AC was evaluated at 7 °C, 25 °C and 50 °C. The results corroborate the potential for using these sources of CDW from Cuba as a RA in asphalt concrete, thereby contributing an important environmental and economic benefit.


Sign in / Sign up

Export Citation Format

Share Document