scholarly journals To Explore the Mechanism and Equivalent Molecular Group of Fuxin Mixture in Treating Heart Failure Based on Network Pharmacology

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yi-ding Yu ◽  
Yi-ping Xiu ◽  
Yang-fan Li ◽  
Yi-tao Xue

Fuxin mixture (FXHJ) is a prescription for the treatment of heart failure. It has been shown to be effective in clinical trials, but its active ingredients and mechanism of action are not completely clear, which limits its clinical application and international promotion. In this study, we used network pharmacology to find, conclude, and summarize the mechanism of FXHJ in the treatment of heart failure. From FXHJ, we found 39 active ingredients and 47 action targets. Next, we constructed the action network and was conducted enrichment analysis. The results showed that FXHJ mainly treated heart failure by regulating the MAPK signaling pathway, PI3KAkt signaling pathway, cAMP signaling pathway, TNF signaling pathway, toll-like receptor signaling pathway, VEGF signaling pathway, NF-kappa B signaling pathway, and the apoptotic signaling molecule BCL2. Through the research method of network pharmacology, this study summarized the preliminary experiments of the research group and revealed the probable mechanism of FXHJ in the treatment of heart failure to a certain extent, which provided some ideas for the development of new drugs.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yi-ding Yu ◽  
Yi-ping Xiu ◽  
Yang-fan Li ◽  
Juan Zhang ◽  
Yi-tao Xue ◽  
...  

Radix Astragali and Semen Lepidii (HQ-TLZ) is a commonly used herbal medicine combination for treatment of heart failure, which has a good clinical effect. However, its active components and mechanism of action are not clear, which limits its clinical application and development. In this study, we explored the mechanism of action of HQ-TLZ in the treatment of heart failure based on network pharmacology. We obtained 11 active ingredients and 109 targets from the TCMSP database and SwissTargetPrediction database. Next, we constructed the action network and carried out enrichment analysis. The results showed that HQ-TLZ treatment of heart failure is primarily achieved by regulating the insulin resistance, erbB signaling pathway, PI3K-Akt signaling pathway, and VEGF signaling pathway. After inverse targeting, molecular docking, and literature search, we determined that the equivalent molecular groups of HQ-TLZ in the treatment of heart failure were quercetin and kaempferol. Based on network pharmacology, we reveal the mechanism of action of HQ-TLZ in the treatment of heart failure to a certain extent. At the same time, we determined the composition of the equivalent molecular group. This provides a bridge for the consistency evaluation of natural herbs and molecular compounds, which is beneficial to the development of novel drugs and further research.



2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Haixiong Lin ◽  
Xiaotong Wang ◽  
Ligang Wang ◽  
Hang Dong ◽  
Peizhen Huang ◽  
...  

Background. Drynariae Rhizoma (DR) has been widely used in the prevention and treatment of various fractures. However, the specific mechanisms of DR’s active ingredients have not been elucidated. The purpose of this study was to explore the synergistic mechanisms of DR for treating fracture. Methods. A network pharmacology approach integrating ingredient screening, target exploration, active ingredients-gene target network construction, protein-protein interaction network construction, molecular docking, gene-protein classification, gene ontology (GO) functional analysis, KEGG pathway enrichment analysis, and signaling pathway integration was used. Results. This approach identified 17 active ingredients of DR, interacting with 144 common gene targets and 143 protein targets of DR and fracture. NCOA1, GSK3B, TTPA, and MAPK1 were identified as important gene targets. Five most important protein targets were also identified, including MAPK1, SRC, HRAS, RXRA, and NCOA1. Molecular docking found that DR has a good binding potential with common protein targets. GO functional analysis indicated that common genes involve multiple processes, parts and functions in biological process, cellular component, and molecular function, including positive regulation of transcription from RNA polymerase II promoter, signal transduction, cytosol, extracellular exosome, cytoplasm, and protein binding. The KEGG pathway enrichment analysis indicated that common gene targets play a role in repairing fractures in multiple signaling pathways, including MAPK, PI3K/AKT, Ras, and VEGF signaling pathways. MAPK and PI3K/AKT signaling pathways were involved in osteoblast formation, Ras signaling pathway was involved in enhancing mesenchymal stromal cell migration, and VEGF signaling pathway was involved in angiogenesis. Conclusion. The study revealed the correlation between DR and fracture and the potential synergistic mechanism of different targets of DR in the treatment of fractures, which provides a reference for the development of new drugs.



Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1245
Author(s):  
Shu Zhang ◽  
Qi Ge ◽  
Liang Chen ◽  
Keping Chen

Diabetes mellitus (DM), as a chronic disease caused by insulin deficiency or using obstacles, is gradually becoming a principal worldwide health problem. Pueraria lobata is one of the traditional Chinese medicinal and edible plants, playing roles in improving the cardiovascular system, lowering blood sugar, anti-inflammation, anti-oxidation, and so on. Studies on the hypoglycemic effects of Pueraria lobata were also frequently reported. To determine the active ingredients and related targets of Pueraria lobata for DM, 256 metabolites were identified by LC/MS non targeted metabonomics, and 19 active ingredients interacting with 51 DM-related targets were screened. The results showed that puerarin, quercetin, genistein, daidzein, and other active ingredients in Pueraria lobata could participate in the AGE-RAGE signaling pathway, insulin resistance, HIF-1 signaling pathway, FoxO signaling pathway, and MAPK signaling pathway by acting on VEGFA, INS, INSR, IL-6, TNF and AKT1, and may regulate type 2 diabetes, inflammation, atherosis and diabetes complications, such as diabetic retinopathy, diabetic nephropathy, and diabetic cardiomyopathy.



2020 ◽  
Vol 11 ◽  
Author(s):  
Yanni Lai ◽  
Qiong Zhang ◽  
Haishan Long ◽  
Tiantian Han ◽  
Geng Li ◽  
...  

Background: Ganghuo Kanggan decoction (GHKGD) is a clinical experience prescription used for the treatment of viral pneumonia in the Lingnan area of China, and its clinical effect is remarkable. However, the mechanism of GHKGD in influenza is still unclear.Objective: To predict the active components and signaling pathway of GHKGD and to explore its therapeutic mechanism in influenza and to verified it in vivo using network pharmacology.Methods: The potential active components and therapeutic targets of GHKGD in the treatment of influenza were hypothesized through a series of network pharmacological strategies, including compound screening, target prediction and pathway enrichment analysis. Based on the target network and enrichment results, a mouse model of influenza A virus (IAV) infection was established to evaluate the therapeutic effect of GHKGD on influenza and to verify the possible molecular mechanism predicted by network pharmacology.Results: A total of 116 candidate active compounds and 17 potential targets were identified. The results of the potential target enrichment analysis suggested GHKGD may involve the RLR signaling pathway to reduce inflammation in the lungs. In vivo experiments showed that GHKGD had a protective effect on pneumonia caused by IAV-infected mice. Compared with the untreated group, the weight loss in the GHKGD group in the BALB/c mice decreased, and the inflammatory pathological changes in lung tissue were reduced (p < 0.05). The expression of NP protein and the virus titers in lung were significantly decreased (p < 0.05). The protein expression of RIG-I, NF-kB, and STAT1 and the level of MAVS and IRF3/7 mRNA were remarkably inhibited in GHKGD group (p < 0.05). After the treatment with GHKGD, the level of Th1 cytokines (IFN-γ, TNF-α, IL-2) was increased, while the expression of Th2 (IL-5, IL4) cytokines was reduced (p < 0.05).Conclusion: Through a network pharmacology strategy and in vivo experiments, the multi-target and multi-component pharmacological characteristics of GHKGD in the treatment of influenza were revealed, and regulation of the RLR signaling pathway during the anti-influenza process was confirmed. This study provides a theoretical basis for the research and development of new drugs from GHKGD.



2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Ke Chen ◽  
Luojian Zhang ◽  
Zhen Qu ◽  
Feng Wan ◽  
Jia Li ◽  
...  

Weibing Formula 1, a classic traditional formula, has been widely used clinically to treat gastritis in recent years. However, the potential pharmacological mechanism of Weibing Formula 1 is still unclear to date. A network pharmacology-based strategy was performed to uncover the underlying mechanisms of Weibing Formula 1 against gastritis. Furthermore, we structured the drug-active ingredients-genes–disease network and PPI network of shared targets, and function enrichment analysis of these targets was carried out. Ultimately, Gene Expression Omnibus (GEO) datasets and real-time quantitative PCR were used to verify the related genes. We found 251 potential targets corresponding to 135 bioactive components of Weibing Formula 1. Then, 327 gastritis-related targets were known gastritis-related targets. Among which, 60 common targets were shared between potential targets of Weibing Formula 1 and known gastritis-related targets. The results of pathway enrichment analysis displayed that 60 common targets mostly participated in various pathways related to Toll-like receptor signaling pathway, MAPK signaling pathway, cytokine-cytokine receptor interaction pathway, chemokine signaling pathway, and apoptosis. Based on the GSE60427 dataset, 15 common genes were shared between differentially expressed genes and 60 candidate targets. The verification results of the GSE5081 dataset showed that except for DUOX2 and VCAM1, the other 13 genes were significantly upregulated in gastritis, which was consistent with the results in the GSE60427 dataset. More importantly, real-time quantitative PCR results showed that the expressions of PTGS2, MMP9, CXCL2, and CXCL8 were significantly upregulated and NOS2, EGFR, and IL-10 were downregulated in gastritis patients, while the expressions of PTGS2, MMP9, CXCL2, and CXCL8 were significantly downregulated and NOS2, EGFR, and IL-10 were upregulated after the treatment of Weibing Formula 1. PTGS2, NOS2, EGFR, MMP9, CXCL2, CXCL8, and IL-10 may be the important direct targets of Weibing Formula 1 in gastritis treatment. Our study revealed the mechanism of Weibing Formula 1 in gastritis from an overall and systematic perspective, providing a theoretical basis for further knowing and application of this formula in the future.



2020 ◽  
Author(s):  
Rong-Bin Chen ◽  
Ying-Dong Yang ◽  
Kai Sun ◽  
Shan Liu ◽  
Wei Guo ◽  
...  

Abstract Background: Postmenopausal osteoporosis (PMOP) is a global chronic and metabolic bone disease, which poses huge challenges to individuals and society. Ziyin Tongluo Formula (ZYTLF) has been proved effective in the treatment of PMOP. However, the material basis and mechanism of ZYLTF against PMOP have not been thoroughly elucidated.Methods: Online databases were used to identify the active ingredients of ZYTLF and corresponding putative targets. Genes associated with PMOP were mined, and then mapped with the putative targets to obtain overlapping genes. Multiple networks were constructed and analyzed, from which the key genes were selected. The key genes were imported to the DAVID database to performs GO and KEGG pathway enrichment analysis. Finally, AutoDock Tools and other software were used for molecular docking of core compounds and key proteins. Results: Ninety-two active compounds of ZYTLF corresponded to 243 targets, with 129 target genes interacting with PMOP, and 50 key genes were selected. Network analysis showed the top 5 active ingredients including quercetin, kaempferol, luteolin, scutellarein, and formononetin., and the top 50 key genes such as VEGFA, MAPK8, AKT1, TNF, ESR1. Enrichment analysis uncovered two significant types of KEGG pathways in PMOP, hormone-related signaling pathways (estrogen , prolactin, and thyroid hormone signaling pathway) and inflammation-related pathways (TNF, PI3K-Akt, and MAPK signaling pathway). Moreover, molecular docking analysis verified that the main active compounds were tightly bound to the core proteins, further confirming the anti-PMOP effects. Conclusions: Based on network pharmacology and molecular docking technology, this study initially revealed the mechanisms of ZYTLF on PMOP, which involves multiple targets and multiple pathways.



2020 ◽  
Author(s):  
Tingting Fang ◽  
Lanqin Liu ◽  
wenjun liu

Abstract Background. Acute myeloid leukemia (AML) is a common malignant tumor of the hematopoietic system. How to extend the survival time of AML patients and improve their prognosis is still a major medical problem. Chinese medicine has a long history in treating AML. Tripterygium wilfordii (TW) is a traditional Chinese medicine. With the deepening of pharmacological research of traditional Chinese medicine, triptolide, one of its active ingredients, has been proven to have a positive effect on the treatment of AML. Therefore,this study aimed on studying the potential therapeutic targets and pharmacological mechanism of TW in Acute myeloid leukemia (AML) based on network pharmacology.Methods. The active components of TW were obtained by network pharmacology through oral bioavailability, drug-likeness filtration. Comparative analysis was used to study the overlapping genes between active ingredient’s targets and AML treatment-related targets. Using STRING database to analyze interactions between overlapping genes. KEGG pathway analysis and Gene Ontology enrichment analysis were conducted in DAVID. These genes were analyzed for survival in OncoLnc database.Key findings. We screened 53 active ingredients, the results of comparative analysis showed that 8 active ingredients had an effect on AML treatment. Based on the active ingredients and overlapping genes, we constructed the Drug-Compounds-Genes-Disease Network. Survival analysis of overlapping genes indicated that some targets possess a significant influence on patients’ survival and prognosis. The enrichment analysis showed that the main pathways of targets are Toll-like receptor signaling pathway, NF-kappa B signaling pathway and HIF-1 signaling pathway.Conclusion. This study, using a network pharmacologic approach, provides another strategy that can help us to understand the mechanisms by which TW treats AML comprehensively.



2021 ◽  
Author(s):  
tan xin ◽  
Wei Xian ◽  
Xiaorong Li ◽  
Yongfeng Chen ◽  
Jiayi Geng ◽  
...  

Abstract PurposeAtrial fibrillation (AF) is a common atrial arrhythmia. Quercetin (Que) has some advantages in the treatment of cardiovascular disease arrhythmias, but its specific drug mechanism of action needs further investigation. To explore the mechanism of action of Que in AF, core target speculation and analysis were performed using network pharmacology and molecular docking methods.MethodsQue chemical structures were obtained from Pubchem. TCMSP, Swiss Target Prediction, Drugbank , STITCH, Binding DB, Pharmmapper, CTD, GeneCards, DISGENET and TTD were used to obtain drug component targets and AF-related genes, and extract AF from normal tissues by GEO database differentially expressed genes. Then, the intersecting genes were obtained by online Wayne mapping tool. The intersection genes were introduced into the top five targets selected for molecular docking via protein-protein interaction (PPI) network to verify the binding activity between Que and the target proteins. GO and KEGG enrichment analysis of the intersected genes using program R was performed to further screen for key genes and key pathways.ResultsThere were 65 effective targets for Que and AF. Through further screening, the top 5 targets were IL6, VEGFA, JUN, MMP9 and EGFR. Que treatment of AF may involve signaling pathways such as lipid and atherosclerosis pathway, AGE-RAGE signaling pathway in diabetic complications, MAPK signaling pathway and IL-17 signaling pathway. Molecular docking suggests that Que has strong binding to key targets.ConclusionThis study systematically elucidates the key targets of Que treatment for AF and the specific mechanisms through network pharmacology as well as molecular docking, providing a new direction for further basic experimental exploration and clinical treatment.



2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Bo Qiao ◽  
Yueying Wu ◽  
Xiaoya Li ◽  
Zhenyuan Xu ◽  
Weigang Duan ◽  
...  

Objective. Yifei Sanjie Formula (YFSJF) is an effective formula on pulmonary fibrosis (PF), which has been used in clinic for more than 30 years. In order to investigate the molecular mechanism of YFSJF in treating PF, network pharmacology was used to predict the cooperative ingredients and associated pathways. Methods. Firstly, we collected potential active ingredients of YFSJF by TCMSP databases. Secondly, we obtained PF-associated targets through OMIM and Genecards database. Finally, metascape was applied for the analysis of GO terms and KEGG pathways. Results. We screened out 76 potential active ingredients and 98 associated proteins. A total of 5715 items were obtained by GO enrichment analysis ( P < 0.05 ), including 4632 biological processes, 444 cellular components, and 639 molecular functions. A total of 143 related KEGG pathways were enriched ( P < 0.05 ), including IL-17 signaling pathway, T cell receptor signaling pathway, TNF signaling pathway, calcium signaling pathway, TH17 cell differentiation, HIF-1 signaling pathway, and PI3K-Akt signaling pathway. Conclusion. YFSJF can interfere with immune and inflammatory response through multiple targets and pathways, which has a certain role in the treatment of PF. This study lays a foundation for future experimental research.



2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Kai Niu ◽  
Qifang Li ◽  
Yuan Liu ◽  
Yi Qiao ◽  
Bingbing Li ◽  
...  

This study aims to analyze the targets of the effective active ingredients of Scutellariae radix-Coptidis rhizoma drug pair (SCDP) in ulcerative colitis (UC) by network pharmacology and molecular docking and to explore the associated therapeutic mechanism. The effective active ingredients and targets of SCDP were determined from the TCMSP database, and the drug ingredient-target network was constructed using the Cytoscape software. The disease targets related to UC were searched in GeneCards, DisGeNET, OMIM, and DrugBank databases. Then, the drug ingredient and disease targets were intersected to construct a protein-protein interaction network through the STRING database. The Metascape database was used for the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the predicted targets of SCDP for UC. The Autodock software was used for molecular docking between the main active ingredient and the core target to evaluate the binding ability. SCDP has 43 effective active ingredients and 134 intersection targets. Core targets included AKT1, TP53, IL-6, VEGFA, CASP3, JUN, TNF, MYC, EGFR, and PTGS2. GO functional enrichment analysis showed that biological process was mainly associated with a cytokine-mediated signaling pathway, response to an inorganic substance, response to a toxic substance, response to lipopolysaccharide, reactive oxygen species metabolic process, positive regulation of cell death, apoptotic signaling pathway, and response to wounding. KEGG enrichment analysis showed main pathway concentrations were related to pathways in cancer, AGE-RAGE signaling pathway in diabetic complications, bladder cancer, IL-17 signaling pathway, apoptosis, p53 signaling pathway, and PI3K-Akt signaling pathway. The drug active ingredient-core target-key pathway network contains 41 nodes and 108 edges, of which quercetin, wogonin, baicalein, acacetin, oroxylin A, and beta-sitosterol are important active ingredients; PTGS2, CASP3, TP53, IL-6, TNF, and AKT1 are important targets; and the pathways involved in UC treatment include pathways in cancer, PI3K-Akt signaling pathway, AGE-RAGE signaling pathway in diabetic, apoptosis, IL-17 signaling pathway and herpes simplex infection. The active ingredient has a good binding capacity to the core target. SCDP key active ingredients are mainly quercetin, wogonin, baicalein, acacetin, oroxylin A, and beta-sitosterol, which function mainly by regulating targets, such as PTGS2, CASP3, TP53, IL-6, TNF, and AKT1, and are associated with multiple signaling pathways as pathways in cancer, PI3K-Akt signaling pathway, apoptosis, IL-17 signaling pathways.



Sign in / Sign up

Export Citation Format

Share Document