scholarly journals Molecular Targets and Mechanisms of Scutellariae radix-Coptidis rhizoma Drug Pair for the Treatment of Ulcerative Colitis Based on Network Pharmacology and Molecular Docking

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Kai Niu ◽  
Qifang Li ◽  
Yuan Liu ◽  
Yi Qiao ◽  
Bingbing Li ◽  
...  

This study aims to analyze the targets of the effective active ingredients of Scutellariae radix-Coptidis rhizoma drug pair (SCDP) in ulcerative colitis (UC) by network pharmacology and molecular docking and to explore the associated therapeutic mechanism. The effective active ingredients and targets of SCDP were determined from the TCMSP database, and the drug ingredient-target network was constructed using the Cytoscape software. The disease targets related to UC were searched in GeneCards, DisGeNET, OMIM, and DrugBank databases. Then, the drug ingredient and disease targets were intersected to construct a protein-protein interaction network through the STRING database. The Metascape database was used for the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the predicted targets of SCDP for UC. The Autodock software was used for molecular docking between the main active ingredient and the core target to evaluate the binding ability. SCDP has 43 effective active ingredients and 134 intersection targets. Core targets included AKT1, TP53, IL-6, VEGFA, CASP3, JUN, TNF, MYC, EGFR, and PTGS2. GO functional enrichment analysis showed that biological process was mainly associated with a cytokine-mediated signaling pathway, response to an inorganic substance, response to a toxic substance, response to lipopolysaccharide, reactive oxygen species metabolic process, positive regulation of cell death, apoptotic signaling pathway, and response to wounding. KEGG enrichment analysis showed main pathway concentrations were related to pathways in cancer, AGE-RAGE signaling pathway in diabetic complications, bladder cancer, IL-17 signaling pathway, apoptosis, p53 signaling pathway, and PI3K-Akt signaling pathway. The drug active ingredient-core target-key pathway network contains 41 nodes and 108 edges, of which quercetin, wogonin, baicalein, acacetin, oroxylin A, and beta-sitosterol are important active ingredients; PTGS2, CASP3, TP53, IL-6, TNF, and AKT1 are important targets; and the pathways involved in UC treatment include pathways in cancer, PI3K-Akt signaling pathway, AGE-RAGE signaling pathway in diabetic, apoptosis, IL-17 signaling pathway and herpes simplex infection. The active ingredient has a good binding capacity to the core target. SCDP key active ingredients are mainly quercetin, wogonin, baicalein, acacetin, oroxylin A, and beta-sitosterol, which function mainly by regulating targets, such as PTGS2, CASP3, TP53, IL-6, TNF, and AKT1, and are associated with multiple signaling pathways as pathways in cancer, PI3K-Akt signaling pathway, apoptosis, IL-17 signaling pathways.

2021 ◽  
Vol 11 ◽  
Author(s):  
Lingjian Guo ◽  
Haixia Shi ◽  
Limin Zhu

Siteng Fang (STF) has been shown to inhibit migration, invasion, and adhesion as well as promote apoptosis in gastric cancer (GC) cells. However, whether it can reverse the multidrug resistance (MDR) of GC to chemotherapy drugs is unknown. Thus, we aimed to elucidate the mechanism of STF in reversing the MDR of GC. The chemical composition of STF and genes related to GC were obtained from the TCMNPAS(TCM Network Pharmacology Analysis System, TCMNPAS) Database, and the targets of the active ingredients were predicted using the Swiss Target Prediction Database. The obtained data were mapped to obtain the key active ingredients and core targets of STF in treating GC. The active component-target network and protein interaction network were constructed by Cytoscape and String database, and the key genes and core active ingredients were obtained. The biological functions and related signal pathways corresponding to the key targets were analyzed and then verified via molecular docking. A total of 14 core active ingredients of STF were screened, as well as 20 corresponding targets, which were mainly enriched in cancer pathway, proteoglycan synthesis, PI3K-AKT signaling pathway, and focal adhesion. Molecular docking showed that the core active ingredients related to MDR, namely quercetin and diosgenin, could bind well to the target. In summary, STF may reverse the MDR of GC and exert synergistic effect with chemotherapeutic drugs. It mediates MDR mainly through the action of quercetin and diosgenin on the PI3K/AKT signaling pathway. These findings are the first to demonstrate the molecular mechanism of STF in reversing MDR in GC, thus providing a direction for follow-up basic research.


2020 ◽  
Author(s):  
Rong-Bin Chen ◽  
Ying-Dong Yang ◽  
Kai Sun ◽  
Shan Liu ◽  
Wei Guo ◽  
...  

Abstract Background: Postmenopausal osteoporosis (PMOP) is a global chronic and metabolic bone disease, which poses huge challenges to individuals and society. Ziyin Tongluo Formula (ZYTLF) has been proved effective in the treatment of PMOP. However, the material basis and mechanism of ZYLTF against PMOP have not been thoroughly elucidated.Methods: Online databases were used to identify the active ingredients of ZYTLF and corresponding putative targets. Genes associated with PMOP were mined, and then mapped with the putative targets to obtain overlapping genes. Multiple networks were constructed and analyzed, from which the key genes were selected. The key genes were imported to the DAVID database to performs GO and KEGG pathway enrichment analysis. Finally, AutoDock Tools and other software were used for molecular docking of core compounds and key proteins. Results: Ninety-two active compounds of ZYTLF corresponded to 243 targets, with 129 target genes interacting with PMOP, and 50 key genes were selected. Network analysis showed the top 5 active ingredients including quercetin, kaempferol, luteolin, scutellarein, and formononetin., and the top 50 key genes such as VEGFA, MAPK8, AKT1, TNF, ESR1. Enrichment analysis uncovered two significant types of KEGG pathways in PMOP, hormone-related signaling pathways (estrogen , prolactin, and thyroid hormone signaling pathway) and inflammation-related pathways (TNF, PI3K-Akt, and MAPK signaling pathway). Moreover, molecular docking analysis verified that the main active compounds were tightly bound to the core proteins, further confirming the anti-PMOP effects. Conclusions: Based on network pharmacology and molecular docking technology, this study initially revealed the mechanisms of ZYTLF on PMOP, which involves multiple targets and multiple pathways.


2022 ◽  
Vol 2022 ◽  
pp. 1-17
Author(s):  
Zhihui Cai ◽  
Huajun Wang ◽  
Jun Jiang ◽  
Shichang Xiao ◽  
Jianpeng Xiao ◽  
...  

Osteoporosis is a degenerative disease that endangers human health. At present, chemical drugs used for osteoporosis have serious side effects. Therefore, it is valuable to search herbs with high safety and good curative effect in antiosteoporosis. Erzhi formula (EZF), an ancient classic compound, has been reported to have a beneficial effect in antiosteoporosis, but its mechanism is unclear. In this paper, the active compounds of EZF were found in Systems Pharmacology Database, and gene targets related to osteoporosis were obtained in GeneCards. The GO functional and KEGG pathway enrichment analysis were performed by Metascape. The network of “components-targets-signal pathway” was constructed by Cytoscape. Next, molecular docking between the active components and hub genes related to the PI3K-Akt signaling pathway was conducted by Autodock. In the verification experiment, the zebrafish induced by prednisolone (PNSL) was used to reproduce glucocorticoid-induced osteoporosis (GIOP) model, and then the reversal effects of EZF were systematically evaluated according to the behavior, skull staining area, bone mineralization area (BMA), average optical density (AOD), and cumulative optical density (COD). Finally, it was shown that 24 components in EZF could regulate 39 common gene targets to exert antiosteoporosis effect. Besides, the main regulatory mechanisms of EZF were 4 signaling pathways: PI3K-Akt, JAK-STAT, AGE-RAGE, and cancer pathway. In PI3K-Akt signaling pathway, wedelolactone, dimethyl wedelolactone, specnuezhenide, ursolic acid, acacetin, beta-sitosterol, apigenin, and kaempferol can bind tightly with EGF, IL-2, and IL-4 genes. Compared with the model group, the moving distance, swimming speed, and cumulative swimming time of zebrafish in EZF group were significantly increased ( P < 0.05 ). Meanwhile, the BMA and COD of zebrafish were significantly improved after the intervention of EZF ( P < 0.05 ). In summary, the 24 components of EZF exert their antiosteoporosis effects by regulating 39 related gene targets, among which the PI3K signaling pathway is crucial. EZF can promote bone formation and reversed GIOP through “multicomponent/multitarget/multipathway” and the medium dose of EZF may be the most suitable concentration for the treatment of GIOP in zebrafish model.


2021 ◽  
Author(s):  
Ruiping Yang ◽  
Xiaojing Lin ◽  
Chunhui Tao ◽  
Ruixue Jiang

Abstract BackgroundBuzhong Yiqi Decoction (BZYQD) has been widely accepted as an alternative treatment for gastric cancer (GC) in China. The present study set out to determine the potential molecular mechanism of BZYQD in the treatment of GC by means of network pharmacology, molecular docking, and molecular dynamics simulation.MethodsThe potential active ingredients and targets of BZYQD were screened out through the Traditional Chinese Medicine Systems Pharmacology (TCMSP). GC-related targets were screened out through the GeneCards database, and the intersection targets of BZYQD and GC were obtained by using the Venn diagram online tool. Then, the TCM-Active Ingredient-Target network was constructed by using the Cytoscape, and the protein-protein interaction (PPI) network was constructed by using the STRING database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the effective targets of BZYQD in GC were performed through the Metascape platform. Finally, the molecular docking between the compounds and the target proteins was performed by using the AutoDock Vina software. The simulation of molecular dynamics was conducted for the optimal protein-ligand complex obtained by molecular docking using the Amber18 software.ResultsA total of 150 active ingredients of BZYQD were retrieved, corresponding to 136 targets of GC. The key active ingredients were quercetin, kaempferol, nobiletin, naringenin, and formononetin. The core targets were AKT1, STAT3, TP53, MAPK1, and MAPK3. GO functional enrichment analysis showed that BZYQD treated GC by affecting various biological processes such as oxidative stress, chemical stress, lipopolysaccharide reaction, and apoptosis. KEGG pathway enrichment analysis indicated that the apoptosis signaling pathway, PI3K/Akt signaling pathway, proteoglycan in cancer, IL-17 signaling pathway, TNF signaling pathway, and HIF-1 signaling pathway were involved. Molecular docking results revealed the highest binding energy for MAPK3 and naringenin. The stable binding of MAPK3 and naringenin was also demonstrated in the molecular dynamics simulation test, with the binding free energy of -25kcal/mol.ConclusionThis study preliminarily revealed the multi-component, multi-target, and multi-pathway characteristics of BZYQD against GC, laying a scientific basis for further research on the molecular mechanism of BZYQD.


2021 ◽  
Author(s):  
Jingyun Jin ◽  
Bin Chen ◽  
Xiangyang Zhan ◽  
Zhiyi Zhou ◽  
Hui Liu ◽  
...  

Abstract Background and objective: To predict the targets and signal pathways of Xiao-Chai-Hu-Tang (XCHT) in the treatment of colorectal cancer (CRC) based on network pharmacology, to further analyze its anti-CRC material basis and mechanism of action.Methods: TCMSP and TCMID databases were adopted to screen the active ingredients and potential targets of XCHT. CRC-related targets were retrieved by analyzing published microarray data (accession number GSE110224) from the Gene Expression Omnibus (GEO) database. The above common targets were used to construct the “herb-active ingredients-target” network by Cytoscape 3.8.0 software. And then, the protein-to-protein interaction(PPI)was constructed and analyzed with BisoGenet and CytoNCA plug-in in Cytoscape. Gene Ontology (GO) functional and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analysis for target genes were then performed using the R package of cluster Profiler. Further, AutoDock Vina software was used to conduct molecular docking studies on the active ingredients and key targets to verify the network pharmacological analysis results.Results: A total of 71 active ingredients of XCHT and 20 potential targets for anti-CRC were identified. The network analysis revealed that quercetin, stigmasterol, kaempferol, baicalein, acacetin may be the key compounds. And PTGS2, NR3C2, CA2, MMP1 may be the key targets. The active ingredients of XCHT interacted with most disease targets of CRC. It fully showed that XCHT exerted its therapeutic effect through the synergistic action of the multi-compound, multi-target, and multi-pathway. Gene ontology enrichment analysis showed 46 GO entries, including 20 biological processes, 6 cellular components, and 20 molecular functions. 11 KEGG signaling pathways had been identified, including IL-17 signaling pathway, TNF signaling pathway, Toll-like receptor signaling pathway, and NF-kappa B signaling pathway. It showed that XCHT played a role in the treatment of CRC by regulating different signal pathways. Molecular docking confirmed the correlation between five core compounds (including quercetin, stigmasterol, kaempferol, baicalein, and acacetin) and PTGS2.Conclusion: The potential active ingredients, possible targets, and key biological pathways for the efficacy of XCHT in the treatment of CRC were preliminarily described, which provided a theoretical basis for further experimental verification research.


2021 ◽  
Author(s):  
Litong Wu ◽  
Ying Chen ◽  
Mingjing Chen ◽  
Yueqin Yang ◽  
Zuzhao Che ◽  
...  

Abstract Objective: To investigate the molecular mechanism of Astragalus-Scorpion in the treatment of prostate cancer by network pharmacology and molecular docking technology.Methods: Using TCMSP, BATMAN-TCM, TCMID and Swiss TargetPrediction Databases to retrieve the active ingredients and corresponding targets of Astragalus-Scorpion. The targets related to prostate cancer were retrieved through GeneCards, so as to obtain the common targets of Astragalus-Scorpion and prostate cancer. The common targets were input into the STRING database for protein interaction analysis. Cytoscape software was used to construct the active “ingredient-target-disease” network, and GO and KEGG enrichment analysis were performed on the common targets. To screen the core ingredients and targets that play therapeutic roles, Autodock software was used for molecular docking verification. Results: 27 active ingredients, 340 potential targets related to active ingredients, 898 targets related to disease and 122 common targets were screened from Astragalus-Scorpion totally. The core targets of PPI network were JUN, AKT1, IL6, MAPK1 and RELA, while the core active ingredients in the active ingredient-target-disease network were quercetin, kaempferol, formononetin, 7-o-methylisomucronulatol and calycosin.762 GO entries and 154 pathways were obtained by enrichment analysis totally. The molecular docking results showed that quercetin binds to AKT1 and RELA, kaempferol to AKT1, and formononetin to RELA, all of which were stable. Conclusion: Quercetin, kaempferol and others in the Astragalus-Scorpion can regulate multiple signaling pathways such as PI3K-Akt signaling pathway by binding to targets such as AKT1 related to prostate cancer, inhibit the proliferation of tumor to play a role for prostate cancer.


Author(s):  
Xianhai Li ◽  
Hua Tang ◽  
Qiang Tang ◽  
Wei Chen

Huang-Lian-Jie-Du decoction (HLJDD) has been used to treat pneumonia for thousands of years in China. However, our understanding of its mechanisms on treating pneumonia is still unclear. In the present work, network pharmacology was used to analyze the potential active ingredients and molecular mechanisms of HLJDD on treating pneumonia. A total of 102 active ingredients were identified from HLJDD, among which 54 were hit by the 69 targets associated with pneumonia. By performing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, we obtained the main pathways associated with pneumonia and those associated with the mechanism of HLJDD in the treatment of pneumonia. By constructing the protein–protein interaction network of common targets, 10 hub genes were identified, which were mainly involved in the tumor necrosis factor (TNF) signaling pathway, interleukin 17 (IL-17) signaling pathway, and nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway. Moreover, the results of molecular docking showed that the active ingredients of HLJDD had a good affinity with the hub genes. The final results indicate that HLJDD has a greater effect on bacterial pneumonia than on viral pneumonia. The therapeutic effect is mainly achieved by regulating the host immune inflammatory response and oxidative stress reaction, antibacterial microorganisms, alleviating the clinical symptoms of pneumonia, repairing damaged cells, and inhibiting cell migration.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jinlong Zhao ◽  
Fangzheng Lin ◽  
Guihong Liang ◽  
Yanhong Han ◽  
Nanjun Xu ◽  
...  

ObjectiveTo explore the effective components and mechanism of Polygonati Rhizoma (PR) in the treatment of osteoporosis (OP) based on network pharmacology and molecular docking methods.MethodsThe effective components and predicted targets of PR were obtained through the Traditional Chinese Medicine Systems Pharmacology and Analysis Platform (TCMSP) database. The disease database was used to screen the disease targets of OP. The obtained key targets were uploaded to the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database for protein-protein interaction (PPI) network analysis. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of key targets. Analysis and docking verification of chemical effective drug components and key targets were performed with IGEMDOCK software.ResultsA total of 12 chemically active components, 84 drug target proteins and 84 common targets related to drugs and OP were obtained. Key targets such as JUN, TP53, AKT1, ESR1, MAPK14, AR and CASP3 were identified through PPI network analysis. The results of enrichment analysis showed that the potential core drug components regulate the HIF-1 signaling pathway, PI3K-Akt signaling pathway, estrogen signaling pathway and other pathways by intervening in biological processes such as cell proliferation and apoptosis and estrogen response regulation, with an anti-OP pharmacological role. The results of molecular docking showed that the key targets in the regulatory network have high binding activity to related active components.ConclusionsPR may regulate OP by regulating core target genes, such as JUN, TP53, AKT1, ESR1, AR and CASP3, and acting on multiple key pathways, such as the HIF-1 signaling pathway, PI3K-Akt signaling pathway, and estrogen signaling pathway.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Botao Pan ◽  
Wenxiu Pan ◽  
Zheng Lu ◽  
Chenglai Xia

Background. The number of hepatocellular carcinoma (HCC) cases worldwide has increased significantly. As a traditional Chinese medicine (TCM) with a long history, Ecliptae herba (EH) has been widely used in HCC patients in China, but its hepatoprotective mechanism is still unclear. Methods. In this study, we applied a network pharmacology-based strategy and experimental verification to systematically unravel the underlying mechanisms of EH against HCC. First, six active ingredients of EH were screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) by the ADME method. Subsequently, 52 potential targets of 6 active ingredients acting on HCC were screened from various databases, including TCMSP, DGIdb, SwissTargetPrediction, CTD, and GeneCards. Then, by constructing protein-protein interaction (PPI) network from STRING, we displayed the intricate connections among these 52 targets through Cytoscape software. We also applied enrichment analysis, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, to provide an outline and set of concepts for describing gene functions and the advanced functions of biological systems of these 52 targets from genomic and molecular level information. Finally, molecular docking and biological experiments were used to reconfirm these results. Results. We hypothesized that EH might exert anti-HCC activity by acting on hub genes, including RELA, MMP9, PTGS2, ESR1, EGFR, AR, AKT1, HIF1A, AHR, CYP3A4, ABCG2, and MMP2. Moreover, based on GO and KEGG analysis, we speculated that EH may exert hepatoprotective effects on HCC through the following mechanisms: regulation of the PI3K-AKT signaling pathway to promote apoptosis and inhibit the abnormal proliferation of HCC, downregulation of HIF-1A expression by activating the HIF-1 signaling pathway, prevention of HCC by regulating lipid metabolism, and inhibition of nonalcoholic fatty liver disease (NAFLD) by the cytochrome P450 subfamily. Subsequent biological experiments verified that EH inhibits the PI3K-AKT signaling pathway through its active ingredients, quercetin, and wedelolactone, thereby inhibiting the proliferation of HCC cells and promoting the apoptosis of HCC cells. Conclusions. The network pharmacological strategy provides an efficient method to systematically explore the pharmacological mechanism of EH in HCC. Our study demonstrated that the anti-HCC proliferation activity of EH is mainly exerted by two active ingredients (quercetin and wedelolactone), which inhibit the proliferation of HCC cells (HepG2 and Huh-7) by inhibiting PI3K-AKT signaling.


Sign in / Sign up

Export Citation Format

Share Document