scholarly journals A Study of the Laws of Abnormal Gas Emissions and the Stability Controls for Coal Mine Walls in Deeply Buried High-Gas Coal Seams

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Anying Yuan ◽  
Hao Hu ◽  
Qiupeng Yuan

At the present time, it is considered to be of major significance to study the gas emission law and stability controls of coal bodies in deeply buried high-gas coal seams. For this reason, in view of the specific problems of gas emissions caused by unstable rib spalling in coal mine walls, comprehensive research methods were adopted in this study, in order to conduct an in-depth examination of micropore structure parameters, gas desorption, diffusion laws, and coal stability levels. The results showed that the development degree of the pores above the micropores, as well as the small pores in soft coal seams, was better than those observed in hard coal seams. In addition, the gas outburst phenomenon was found to have more easily formed in the soft coal seams. The coal body of the No. 6 coal seam in the Xieqiao Coal Mine not only provided the conditions for gas adsorption but also provided dominant channels for gas diffusion and migration. The abnormal gas emissions of the No. 6 coal seam were jointly caused by the relatively developed pores above the small holes in the coal body, rib spalling of coal mine walls, and so on. The research results also revealed the evolution law of mechanical characteristics of the No. 6 coal seam under different water content conditions. It was found that the strength levels of the No. 6 coal seam first increased and then decreased with the increase in water content, and the water content level at the maximum strength of the coal seam was determined to be 7.09%. This study put forward a method which combined the water injection technology of long-term static pressure water injections in deep coal mining holes and real-time dynamic pressure water injections in shallower holes. Field experiments were successfully carried out.

2014 ◽  
Vol 522-524 ◽  
pp. 1394-1398
Author(s):  
Tao Qin ◽  
Yong Li Liu ◽  
Chang Ji Dong ◽  
Ping Wang

For composite thick seams have been incidents burst power disasters, and seriously affect the safety of the mine production.Based on the engineering background in coal mine, through the same mining conditions, stope mining process simulation which happens in single hard coal, soft coal and single composite thick Coal Seam of Island face were studied through comparative analysis by FLAC3D numerical simulation technology. Tendency and trend of the pressure distribution results obtain through the comparative analysis . The research results has been applied in the actual coal mining.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Dan Zhao ◽  
Mingyu Wang ◽  
Xinhao Gao

To reduce gas disasters in low permeability and high-gas coal seams and improve gas predrainage efficiency, conventional deep-hole presplitting blasting permeability increasing technology was refined and perfected. The numerical calculation model of presplitting blasting was established by using ANSYS/LS-DYNA numerical simulation software. The damage degree of coal and rock blasting was quantitatively evaluated by using the value range of the damage variable D. According to the actual field test parameters of coal seam #3 in the Sanyuan coal mine, Dlim = 0.81–1.0 was the coal rock crushing area, Dlim = 0.19–0.81 was the coal rock crack area, and Dlim = 0–0.19 was the coal rock disturbance area. By comparing and analysing the damage distribution nephogram of coal and rock mass under the influence of different millisecond blasting time interval and the blasting effect of simulation model, the optimal layout parameters of multilayer through cracks were obtained theoretically. And, the determined parameters were tested on the working face of the 1312 transportation roadway in coal seam #3 of the Sanyuan coal mine. The permeability effect was compared and analysed through the analysis of the gas concentration, gas purity, and mixing volume before and after the implementation of deep-hole presplitting blasting antireflection technology, as well as the change of gas pressure, attenuation coefficient, permeability coefficient, and other parameters between blasting coal seams. The positive role of millisecond blasting in reducing pressure and increasing permeability in low permeability and high-gas coal seam were determined.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4429
Author(s):  
Marek Borowski ◽  
Piotr Życzkowski ◽  
Jianwei Cheng ◽  
Rafał Łuczak ◽  
Klaudia Zwolińska

Greenhouse gases such as carbon dioxide and methane cause global warming and consequently climate change. Great efforts are being made to reduce greenhouse gas emissions with the objective of addressing this problem, hence the popularity of technologies conductive to reducing greenhouse gas emissions. CO2 emissions can be reduced by improving the thermal efficiency of combustion engines, for example, by using cogeneration systems. Coal mine methane (CMM) emerges due to mining activities as methane released from the coal and surrounding rock strata. The amount of methane produced is primarily influenced by the productivity of the coal mine and the gassiness of the coal seam. The gassiness of the formation around the coal seam and geological conditions are also important. Methane can be extracted to the surface using methane drainage installations and along with ventilation air. The large amounts of methane captured by methane drainage installations can be used for energy production. This article presents a quarterly summary of the hourly values of methane capture, its concentration in the methane–air mixture, and electricity production in the cogeneration system for electricity and heat production. On this basis, neural network models have been proposed in order to predict electricity production based on known values of methane capture, its concentration, pressure, and parameters determining the time and day of the week. A prediction model has been established on the basis of a multilayer perceptron network (MLP).


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Anying Yuan

At the present time, it is of major significance to examine the differences in the gas diffusion and migration characteristics of soft and hard coal in order to prevent and control safety hazards in high gas coal seams. In this study, the differences in the gas diffusion and migration characteristics between soft coal and hard coal were examined in detail using macrostructural, mesostructural, and microstructural research methods. The root causes of the differences in the gas diffusion and migration between soft coal and hard coal were revealed in the obtained research results. The study shows that, in terms of the macrostructures, the soft coal particle grains were flakey and with shapes resembling fingernails. Meanwhile, the hard coal particle grains were observed to be in the shapes of complete blocks. In addition, in terms of the mesostructures of the different coal types, it was found that the proportion of granular coal below the particle size limit of 6 mm in the soft coal was much higher than that of the hard coal. Also, from the aspect of the characteristics of the microstructures, the pores and fissures on the soft coal surfaces were observed to be better developed, and the BJH specific surface areas of the soft coal were more than twice those of the hard coal. That is to say, the gas diffusion and migration conditions of the soft coal were better than those of the hard coal. At the same time, the increments of the specific surface areas and volumes of the pores of soft coal were above 100 nm, which provided channels for gas diffusion and migration at rates of more than twice those of the hard coal. Therefore, the soft coal was more conducive to gas emissions. This study conducted gas desorption experiments on both soft and hard coal samples and found that the initial gas desorption speed of the soft coal was significantly higher than that of the hard coal. Since the instantaneous gas emissions of the soft coal were significantly higher than those of the hard coal, it was considered to be more likely that gas outbursts and transfinite accidents could potentially occur in the soft coal layers of a project site. This study’s results provided a foundation and basis for effective gas control measures in coal seams composed of soft coal layers, which will be of major significance to the safety of coal mining activities in the future.


2015 ◽  
Vol 60 (2) ◽  
pp. 443-453 ◽  
Author(s):  
Józef Dubiński ◽  
Marian Turek

Abstract An analysis of conditions which enable attaining possibly highest productivity of industrial scale underground coal gasification technology is presented. The analysis was prepared basing on results obtained during an experimental gasification process conducted in workings of an active hard coal mine. Basic aspects determining application and productivity of the technology concern both general conditions, referring to the hard coal seam being gasified, and practical issues, which need to be considered in coal mine conditions. To present them, the technology of underground coal gasification and still commonly used classical longwall method of mining coal seams are compared.


2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Yunpei Liang ◽  
Lei Li ◽  
Xuelong Li ◽  
Kequan Wang ◽  
Jinhua Chen ◽  
...  

With mining technology and mechanization degree being improving, fully mechanized caving mining technology (FCM) has become a main method for thick coal seam extraction in China. However, roof-coal caving characteristics in turn restrict its recovery efficiency, especially for the coal seam with complicated structure (CCS), that is, the coal seam comprises hard or soft coal and gangue. In order to explore the key factors influencing the roof-coal caving and recovery characteristics, related research work has been conducted as follows: firstly, a mechanical model of CCS has been established, which indicates the strength of the coal and gangue will directly affect the roof-coal recovery. Meanwhile, based on the geological settings of Qinyuan coal mine, numerical simulation on roof-coal caving law under different thicknesses of hard or soft coal and gangue has been performed using UDEC software. The results show that the maximum principal stress will increase with the increase of mining depth, making the roof-coal to break easily. Furthermore, the range of the plastic zone of the top coal and the damage degree of the top coal increase with the increase of mining depth. Physical modeling results show that when an extraction-caving ratio is 1, the number of times the coal arch forms is 0.43 at every caving, up to a maximum of 3; the number of times coal arch forms with an extraction-caving ratio of 2 is 4.65 times larger than that with an extraction-caving ratio of 1. The probability of coal arch formation with an extraction-caving ratio of 3 is minimal, about 0.4, which is due to that the arch span is large and the curvature is small, so it is difficult to form a stable arch structure. According to the mechanical characteristics of roof-coal in Qinyuan coal mine, deep-hole blasting technique has been used to reduce the fragments of roof-coal crushed. The results show that this technique can effectively improve the recovery of roof-coal.


2013 ◽  
Vol 671-674 ◽  
pp. 1144-1149
Author(s):  
Le Tuan Cheng ◽  
Jia Lin Zhang ◽  
Zheng Sheng Zou ◽  
Qing Bo Li

B1 coal seam located at -550m level in Liangbei Coal Mine is a typical "three-soft" seam. The coal roadway with a depth of 610-750m lies under the critical softening depth of the roadway, and its support difficulty coefficient is 1.5-2.0. The coal has poor air permeability, high gas content and high gas pressure, so danger degree of the gas outburst is relatively strong. The coal seam was destroyed in a disastrous state by more than 100 boreholes for gas outburst prevention during the excavation. This results in the difficulty in the roadway support. Engineering geological characteristics of the coal roadway at 11 mining area are introduced. Based on the engineering geo-mechanics method, the reasons of deformation and failure of the coal roadway are analyzed. In view of problems in excavation and support, as well as the type of the coal roadway deformation mechanism, the borehole parameters are optimized for the gas outburst prevention, and bolt-net-cable coupling support with high convex steel-belt is used to control the coal roadway stability at 11 mining area. Practice shows that the effect is fine.


2012 ◽  
Vol 524-527 ◽  
pp. 613-617
Author(s):  
Jun Hua Xue ◽  
Sheng Xue

To address the issue of high gas emissions in mining gassy coal seams in underground coal mines, the concept of a three-entry panel layout with a retained goaf-edge gateroad and a “Y” type ventilation system is introduced in this paper. With the layout and ventilation system, distribution characteristics of methane concentration in the panel goaf is analyzed, technologies of gas drainage with boreholes drilled from the retained goaf-edge gateroad and into stress-relieved overlying and underlying seams are described, and an application case of such layout in a coal mine is also presented in this paper.


2016 ◽  
Vol 5 (1) ◽  
pp. 1-17
Author(s):  
Julia Busse ◽  
Alexander Scheuermann ◽  
Detlef Bringemeier ◽  
Alex Hossack ◽  
Ling Li

Abstract The planning and design of any coal mine development requires among others a thorough investigation of the geological, geotechnical and hydrogeological subsurface conditions. As part of a coal mine exploration program we conducted heat pulse vertical flow meter testing. The flow data were combined with absolute and differential temperature logging data to gain information about the hydraulic characteristics of two different coal seams and their over- and interburden. For the strata that were localised based on geophysical logging data including density, gamma ray and resistivity hydraulic properties were quantified. We demonstrate that the temperature log response complements the flow meter log response. A coupling of both methods is therefore recommended to get an insight into the hydraulic conditions in a coal seam and its overburden.


2013 ◽  
Vol 807-809 ◽  
pp. 2378-2388 ◽  
Author(s):  
Hua Wang ◽  
Zhi Qiang Liu ◽  
Hong Guang Ji ◽  
Jin An Wang ◽  
Guo Dong Zhao ◽  
...  

Shuangliu mine is located in the middle of Hedong coalfield, Lvliang City , Shanxi Province. It is one of the typical NorthChinaType coalfields. The upper strata of the lower-group coal seams (8#, 9# seam) have several thin-layer limestones of the Taiyuan Formation, and the underlying strata of the lower-group coal seams have thick Ordovician limestone. Water inrush accident has ever happened in other mine in its vicinity. Therefore, whether the lower-group coal seams could be mined safely is related to the medium-and long-term program and sustainable development of Shuangliu Mine. Based on experimental study of physical and mechanical properties of main rocks of the roof and floor of the under-group coal seams, and the application of "Up Three Zone" Theory of coal seam roof (the caving zone, water flowing fractured zone and bending sinking zone), "Down Three Zone" Theory of coal seam floor (mining damage zone, water-resisting zone, water-conductive zone) and Water inrush coefficient Theory, we analyzed the water inrush risk and divided potential dangerous subareas of water inrush from coal seam floor while mining lower-group coal seams. The research findings can provide scientific basis for mining design and safe mining of lower-group coal seams in Shuangliu Coal Mine.


Sign in / Sign up

Export Citation Format

Share Document