scholarly journals Relationship between Lower Limb Kinematics and Upper Trunk Acceleration in Recreational Runners

2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Laura Simoni ◽  
Silvia Pancani ◽  
Federica Vannetti ◽  
Claudio Macchi ◽  
Guido Pasquini

Upper trunk (UT) kinematics in runners and its relationship with lower limbs has been poorly investigated, although it is acknowledged that dynamic stability of the upper body is a primary objective of human locomotion. This study aimed to explore UT kinematics according to gender and level of training and in relation to lower limb run patterns described through the presence of: overstriding, crossover, excessive protonation, and pelvic drop. Lower body variables chosen to describe running pattern were those that are frequently modified during gait-retraining with the goal of reducing injury risk. Eighty-seven recreational runners (28 females and 59 males, age 41 ± 10 years) performed a one minute run test on a treadmill at self-selected speed. UT kinematics was measured using an inertial measurement unit, while run features were assessed through an optoelectronic system and video analysis. Accelerations and root-mean-square on mediolateral and anteroposterior axes, normalized using the vertical component of the acceleration, were estimated to describe UT stability. Results showed no significant differences in the normalized UT acceleration root-mean-square according to gender and level of training as well as according to the presence of overstriding, crossover, and excessive protonation. The only running strategy studied in this work that showed a significant relationship with UT stability was the presence of excessive pelvic drop. The latter was significantly associated (p=0.020) to a decrease in the normalized acceleration root-mean-square along the mediolateral direction. Although the excessive pelvic drop seemed to have a positive effect in stabilizing the upper body, concerns remain on the effect of a poor control of the pelvis on the biomechanics of lower limbs. Results obtained confirm the hypothesis that the lower body is able to respond to varying impact load conditions to maintain UT stability.

2018 ◽  
Vol 43 (2) ◽  
pp. 204-212 ◽  
Author(s):  
Francesco Paradisi ◽  
Eugenio Di Stanislao ◽  
Aurora Summa ◽  
Stefano Brunelli ◽  
M Traballesi ◽  
...  

Background: The observation of upper body movement is gaining interest in the gait analysis community. Recent studies involved the use of body-worn motion sensors, allowing translation of laboratory measurements to real-life settings in the context of patient monitoring and fall prevention. Objectives: It was shown that amputee persons demonstrate altered acceleration patterns due to the presence of prosthetic components, while no information is available on how accelerations propagate upwards to the head during level walking. This descriptive study aims to fill this gap. Study design: Original research report. Methods: Twenty definitive prosthesis users with transtibial amputation and 20 age-matched able-bodied individuals participated in the study. Three magneto-inertial measurement units were placed at head, sternum and pelvis level to assess acceleration root mean square. Three repetitions of the 10-m walking test were performed at a self-selected speed. Results: Acceleration root mean square was significantly larger at pelvis and head level in individuals with amputation than in able-bodied participants, mainly in the transverse plane ( p < 0.05). Differences were also observed in how accelerations propagate upwards, highlighting that a different motor strategy is adopted in amputee persons gait to compensate for increased instability. Conclusion: The obtained parameters allow an objective mobility assessment of amputee persons that can integrate with the traditional clinical approach. Clinical relevance Transtibial amputees exhibit asymmetries due to the sound limb’s support prevalence during gait: this is evidenced by amplified accelerations on the transverse plane and by related differences in upper body movement control. Assessing these accelerations and their attenuations upwards may be helpful to understand amputee’s motor strategies and to improve prosthetic training.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 53
Author(s):  
Joohwan Sung ◽  
Sungmin Han ◽  
Heesu Park ◽  
Hyun-Myung Cho ◽  
Soree Hwang ◽  
...  

The joint angle during gait is an important indicator, such as injury risk index, rehabilitation status evaluation, etc. To analyze gait, inertial measurement unit (IMU) sensors have been used in studies and continuously developed; however, they are difficult to utilize in daily life because of the inconvenience of having to attach multiple sensors together and the difficulty of long-term use due to the battery consumption required for high data sampling rates. To overcome these problems, this study propose a multi-joint angle estimation method based on a long short-term memory (LSTM) recurrent neural network with a single low-frequency (23 Hz) IMU sensor. IMU sensor data attached to the lateral shank were measured during overground walking at a self-selected speed for 30 healthy young persons. The results show a comparatively good accuracy level, similar to previous studies using high-frequency IMU sensors. Compared to the reference results obtained from the motion capture system, the estimated angle coefficient of determination (R2) is greater than 0.74, and the root mean square error and normalized root mean square error (NRMSE) are less than 7° and 9.87%, respectively. The knee joint showed the best estimation performance in terms of the NRMSE and R2 among the hip, knee, and ankle joints.


2016 ◽  
Vol 71 (1) ◽  
Author(s):  
E.F. Porto ◽  
A.A.M. Castro ◽  
M. Velloso ◽  
O. Nascimento ◽  
F. Dal Maso ◽  
...  

mandatory constituents of a rehabilitation programme for patients with COPD. However, it is not known how much these exercises may induce pulmonary dynamic hyperinflation (DH). Objective. To evaluate the DH in patients with COPD exercising the upper and lower parts of the body at the same metabolic demand. Methods. Sixteen patients aged 63 ± 13 years and with a FEV1 of 1.5 ± 0.7 L (41 ± 11% pred) were studied. Patients initially performed a maximal exercise test with the arms using the diagonal movement technique. The lower limbs were exercised on a treadmill at the same metabolic demand. Results. Inspiratory capacity decreased 222 ± 158 ml (9.8%) after the upper body exercise (p &lt; 0.0001) and 148 ± 161 ml (7%) after exercise with the lower body (p = 0.0028) and a difference between the two groups was found (p &lt; 0.05). There was no difference between resting IC before upper and lower limbs exercises (p = 0.8); increase in minute ventilation and in pulmonary ventilation in percentage of maximum voluntary ventilation and reduction of expiratory time were larger in the upper limbs exercise (p &lt; 0.05). Dyspnea as measured by the Borg Scale was higher in the upper body (3.9 ± 2.2) than in the lower body (2.3 ± 1.3) at the end of the exercise (p = 0.033). Pulmonary ventilation and inspiratory capacity were correlated (p = 0.0001; r = 0.82). Conclusion. Exercise with the upper part of the body causes more DH and dyspnea than exercise with the lower part of the body at the same metabolic demand.


2018 ◽  
Vol 124 (2) ◽  
pp. 462-472
Author(s):  
Kurt H. Schütte ◽  
Saint Sackey ◽  
Rachel Venter ◽  
Benedicte Vanwanseele

Maintaining stability under dynamic conditions is an inherent challenge to bipedal running. This challenge may impose an energetic cost (Ec) thus hampering endurance running performance, yet the underlying mechanisms are not clear. Wireless triaxial trunk accelerometry is a simple tool that could be used to unobtrusively evaluate these mechanisms. Here, we test a cost of instability hypothesis by examining the contribution of trunk accelerometry-based measures (triaxial root mean square, step and stride regularity, and sample entropy) to interindividual variance in Ec (J/m) during treadmill running. Accelerometry and indirect calorimetry data were collected concurrently from 30 recreational runners (16 men; 14 women) running at their highest steady-state running speed (80.65 ± 5.99% V̇o2max). After reducing dimensionality with factor analysis, the effect of dynamic stability features on Ec was evaluated using hierarchical multiple regression analysis. Three accelerometry-based measures could explain an additional 10.4% of interindividual variance in Ec after controlling for body mass, attributed to anteroposterior stride regularity (5.2%), anteroposterior root mean square ratio (3.2%), and mediolateral sample entropy (2.0%). Our results lend support to a cost of instability hypothesis, with trunk acceleration waveform signals that are 1) more consistent between strides anteroposterioly, 2) larger in amplitude variability anteroposterioly, and 3) more complex mediolaterally and are energetically advantageous to endurance running performance. This study shows that wearable trunk accelerometry is a useful tool for understanding the Ec of running and that running stability is important for economy in recreational runners. NEW & NOTEWORTHY This study evaluates and more directly lends support to a cost of instability hypothesis between runners. Moreover, this hypothesis was tested using a minimalist setup including a single triaxial trunk mounted accelerometer, with potential transferability to biomechanical and performance analyses in typical outdoor settings.


2020 ◽  
Vol 28 (5) ◽  
pp. 573-584
Author(s):  
Kristina Daunoraviciene ◽  
Jurgita Ziziene ◽  
Agne Ovcinikova ◽  
Rasa Kizlaitiene ◽  
Julius Griskevicius

BACKGROUND: A lack of movement coordination characterized by the undershoot or overshoot of the intended location with the hand, arm, or leg is often found in individuals with multiple sclerosis (MS). Standardized as Finger-to-Nose (FNT) and The Heel-to-Shin (HST) tests are the most frequently used tests for qualitative examination of upper and lower body coordination. Inertial sensors facilitate in performing quantitative motion analysis and by estimating body symmetry more accurately assess coordination lesion and imbalance. OBJECTIVES: To assess the body symmetry of upper and lower limbs quantitatively, and to find the best body symmetry indices to discriminate MS from healthy individuals (CO). METHODS: 28 MS patients and 23 CO participated in the study. Spatiotemporal parameters obtained from six Inertial Measurement Units (IMUs) were placed on the upper and lower extremities during FNT and HST tests. All data were analyzed using statistical methods in MATLAB. RESULTS: Asymmetry indices of temporal parameters showed a significant increase in upper body and lower body asymmetry of MS compared to CO. However, CO have a greater kinematic asymmetry compared to MS. CONCLUSION: Temporal parameters are the most sensitive to body asymmetry evaluation. However, range of motion is completely inappropriate if it is calculated for one movement cycle.


Author(s):  
Derek Lahr ◽  
Viktor Orekhov ◽  
Bryce Lee ◽  
Dennis Hong

This paper presents the design of our new 33 degree of freedom full size humanoid robot, SAFFiR (Shipboard Autonomous Fire Fighting Robot). The goal of this research project is to realize a high performance mixed force and position controlled robot with parallel actuation. The robot has two 6 DOF legs and arms, a waist, neck, and 3 DOF hands/fingers. The design is characterized by a central lightweight skeleton actuated with modular ballscrew driven force controllable linear actuators arranged in a parallel fashion around the joints. Sensory feedback on board the robot includes an inertial measurement unit, force and position output of each actuator, as well as 6 axis force/torque measurements from the feet. The lower body of the robot has been fabricated and a rudimentary walking algorithm implemented while the upper body fabrication is completed. Preliminary walking experiments show that parallel actuation successfully minimizes the loads through individual actuators.


Author(s):  
Curt A. Laubscher ◽  
Ryan J. Farris ◽  
Jerzy T. Sawicki

This paper describes the first stages of hardware development and preliminary assessment for a powered lower limb orthosis designed to provide gait assistance and rehabilitation to children with walking impairments, such as those associated with cerebral palsy and spina bifida. The design requirements, including range of motion, speeds, torques, and powers, are investigated and presented based on a target user age range of 6–11 years old. A three stage joint actuator is designed, built, and tested against the design requirements. The 0.6 kg actuator produced 4.2 Nm continuous torque and 17.2 Nm peak torque, and was able to run up to a speed of 480 deg/s. Backdrivability was characterized in terms of rotational friction, which was measured at 1.1 Nm. Finally, a 5.1 kg prototype orthosis was developed consisting of a hip segment, left and right thigh segments, and left and right shank segments, with four identical actuator prototypes installed in the thigh segments to actuate the hips and knees. Control electronics and a basic control structure were implemented to test the joint tracking capability of the orthosis against a predefined set of trajectories which were representative of pediatric gait patterns. Fitted to a dummy, the controlled limb successfully tracked the desired trajectories with a root-mean-square error of 9% and 4% of full scale for the hips and knees, respectively. With the dummy loaded with additional weight to representing a 32 kg child, the limbs also successfully tracked the trajectories with a root-mean-square error of 15% and 6% of full scale for the hips and knees, respectively.


VASA ◽  
2012 ◽  
Vol 41 (2) ◽  
pp. 132-135 ◽  
Author(s):  
Krohn ◽  
Gebauer ◽  
Hübler ◽  
Beck

The mid-aortic syndrome is an uncommon clinical condition characterized by severe narrowing of the descending aorta, usually with involvement of its renal and visceral branches, presenting with uncontrollably elevated blood pressures of the upper body, renal and cardiac failure, intestinal ischemia, encephalopathy symptoms and claudication of the lower limbs, although clinical presentation is variable. In this article we report the case of an eleven-year-old patient with the initial diagnosis of a mid-aortic syndrome and present the computed tomography angiography pictures and reconstructions before and after surgical therapy.


2017 ◽  
Vol 2 (1) ◽  

Introduction: Congenital Syphilis (CS) occurs through the transplacental transmission of Treponema pallidum in inadequately treated or non-treated pregnant women, and is capable of severe consequences such as miscarriage, preterm birth, congenital disease and/or neonatal death. CS has been showing an increasing incidence worldwide, with an increase of 208% from 2009 to 2015 in Brazil. Case report: 2-month old infant receives care in emergency service due to edema of right lower limb with pain in mobilization. X-ray with osteolytic lesion in distal fibula. Infant was sent to the Pediatrics Oncology clinic. Perinatal data: 7 prenatal appointments, negative serology at 10 and 30 weeks of gestation. End of pregnancy tests were not examined and tests for mother’s hospital admission were not requested. Mother undergone elective cesarean section at 38 weeks without complications. During the pediatric oncologist appointment, patient showed erythematous-squamous lesions in neck and other scar-like lesions in upper body. A new X-ray of lower limbs showed lesions in right fibula with periosteal reaction associated with aggressive osteolytic lesion compromising distal diaphysis, with cortical bone rupture and signs of pathological fracture, suggestive of eosinophilic granuloma. She was hospitalized for a lesion biopsy. Laboratory tests: hematocrit: 23.1 / hemoglobin 7.7 / leukocytes 10,130 (without left deviation) / platelets 638,000 / Negative Cytomegalovirus IgG and IgM and Toxoplasmosis IgG and IgM / VDRL 1:128. Congenital syphilis diagnosis with skin lesions, bone alterations and anemia. Lumbar puncture: glucose 55 / total proteins 26 / VDRL non reagent / 13 leukocytes (8% neutrophils; 84% monomorphonuclear; 8% macrophages) and 160 erythrocytes / negative VDRL and culture. X-ray of other long bones, ophthalmological evaluation and abdominal ultrasound without alterations. Patient was hospitalized for 14 days for treatment with Ceftriaxone 100mg/kg/day, due to the lack of Crystalline Penicillin in the hospital. She is now under outpatient follow-up. Discussion: CS is responsible for high rates of morbidity and mortality. The ongoing increase of cases of this pathology reflects a severe health issue and indicates failures in policies for the prevention of sexually transmitted diseases, with inadequate follow-up of prenatal and maternity protocols.


Sign in / Sign up

Export Citation Format

Share Document