Quantitative body symmetry assessment during neurological examination

2020 ◽  
Vol 28 (5) ◽  
pp. 573-584
Author(s):  
Kristina Daunoraviciene ◽  
Jurgita Ziziene ◽  
Agne Ovcinikova ◽  
Rasa Kizlaitiene ◽  
Julius Griskevicius

BACKGROUND: A lack of movement coordination characterized by the undershoot or overshoot of the intended location with the hand, arm, or leg is often found in individuals with multiple sclerosis (MS). Standardized as Finger-to-Nose (FNT) and The Heel-to-Shin (HST) tests are the most frequently used tests for qualitative examination of upper and lower body coordination. Inertial sensors facilitate in performing quantitative motion analysis and by estimating body symmetry more accurately assess coordination lesion and imbalance. OBJECTIVES: To assess the body symmetry of upper and lower limbs quantitatively, and to find the best body symmetry indices to discriminate MS from healthy individuals (CO). METHODS: 28 MS patients and 23 CO participated in the study. Spatiotemporal parameters obtained from six Inertial Measurement Units (IMUs) were placed on the upper and lower extremities during FNT and HST tests. All data were analyzed using statistical methods in MATLAB. RESULTS: Asymmetry indices of temporal parameters showed a significant increase in upper body and lower body asymmetry of MS compared to CO. However, CO have a greater kinematic asymmetry compared to MS. CONCLUSION: Temporal parameters are the most sensitive to body asymmetry evaluation. However, range of motion is completely inappropriate if it is calculated for one movement cycle.

Sensor Review ◽  
2017 ◽  
Vol 37 (1) ◽  
pp. 101-109 ◽  
Author(s):  
Ye Chen ◽  
Zhelong Wang

Purpose Existing studies on human activity recognition using inertial sensors mainly discuss single activities. However, human activities are rather concurrent. A person could be walking while brushing their teeth or lying while making a call. The purpose of this paper is to explore an effective way to recognize concurrent activities. Design/methodology/approach Concurrent activities usually involve behaviors from different parts of the body, which are mainly dominated by the lower limbs and upper body. For this reason, a hierarchical method based on artificial neural networks (ANNs) is proposed to classify them. At the lower level, the state of the lower limbs to which a concurrent activity belongs is firstly recognized by means of one ANN using simple features. Then, the upper-level systems further distinguish between the upper limb movements and infer specific concurrent activity using features processed by the principle component analysis. Findings An experiment is conducted to collect realistic data from five sensor nodes placed on subjects’ wrist, arm, thigh, ankle and chest. Experimental results indicate that the proposed hierarchical method can distinguish between 14 concurrent activities with a high classification rate of 92.6 per cent, which significantly outperforms the single-level recognition method. Practical implications In the future, the research may play an important role in many ways such as daily behavior monitoring, smart assisted living, postoperative rehabilitation and eldercare support. Originality/value To provide more accurate information on people’s behaviors, human concurrent activities are discussed and effectively recognized by using a hierarchical method.


2016 ◽  
Vol 71 (1) ◽  
Author(s):  
E.F. Porto ◽  
A.A.M. Castro ◽  
M. Velloso ◽  
O. Nascimento ◽  
F. Dal Maso ◽  
...  

mandatory constituents of a rehabilitation programme for patients with COPD. However, it is not known how much these exercises may induce pulmonary dynamic hyperinflation (DH). Objective. To evaluate the DH in patients with COPD exercising the upper and lower parts of the body at the same metabolic demand. Methods. Sixteen patients aged 63 ± 13 years and with a FEV1 of 1.5 ± 0.7 L (41 ± 11% pred) were studied. Patients initially performed a maximal exercise test with the arms using the diagonal movement technique. The lower limbs were exercised on a treadmill at the same metabolic demand. Results. Inspiratory capacity decreased 222 ± 158 ml (9.8%) after the upper body exercise (p < 0.0001) and 148 ± 161 ml (7%) after exercise with the lower body (p = 0.0028) and a difference between the two groups was found (p < 0.05). There was no difference between resting IC before upper and lower limbs exercises (p = 0.8); increase in minute ventilation and in pulmonary ventilation in percentage of maximum voluntary ventilation and reduction of expiratory time were larger in the upper limbs exercise (p < 0.05). Dyspnea as measured by the Borg Scale was higher in the upper body (3.9 ± 2.2) than in the lower body (2.3 ± 1.3) at the end of the exercise (p = 0.033). Pulmonary ventilation and inspiratory capacity were correlated (p = 0.0001; r = 0.82). Conclusion. Exercise with the upper part of the body causes more DH and dyspnea than exercise with the lower part of the body at the same metabolic demand.


Author(s):  
Tae-Whan Kim ◽  
Jae-Won Lee ◽  
Seoung-Ki Kang ◽  
Kyu-Yeon Chae ◽  
Sang-Hyup Choi ◽  
...  

The purpose of this study is to compare and analyze the kinematic characteristics of the upper limb segments during the archery shooting of Paralympic Wheelchair Class archers (ARW2—second wheelchair class—paraplegia or comparable disability) and Paralympic Standing Class archers (ARST—standing archery class—loss of 25 points in the upper limbs or lower limbs), where archers are classified according to their disability grade among elite disabled archers. The participants of this study were selected as seven elite athletes with disabilities by the ARW2 (n = 4) and ARST (n = 3). The analysis variables were (1) the time required for each phase, (2) the angle of inclination of the body center, (3) the change of trajectory of body center, and (4) the change of the movement trajectory of the bow center by phase when performing six shots in total. The ARW2 group (drawing phase; M = 2.228 s, p < 0.05, holding phase; M = 4.414 s, p < 0.05) showed a longer time than the ARST group (drawing phase; M = 0.985 s, holding phase; M = 3.042 s), and the angle of the body did not show a significant difference between the two groups. Additionally, in the direction of the anteroposterior axis in the drawing phase, the change in the movement trajectory of the body center showed a more significant amount of change in the ARW2 group than in the ARST group, and the change in the movement trajectory of the bow center did not show a significant difference between the two groups.


2021 ◽  
pp. 1-9
Author(s):  
Jie Zhang ◽  
Ping Ye ◽  
Lizheng Zhang ◽  
Hongliu Wu ◽  
Tianxi Chi ◽  
...  

BACKGROUND: The treatment of adolescent patients with distal femoral cancer has always been a concern. The limb-salvage, regarded as a mainstream treatment, had been developed in recent years, but its application in children still remains challenging. This is because it can lead to potential limb-length discrepancy from the continued normal growth of the contralateral lower body. The extendable prosthesis could solve this problem. The principle is that it can artificially control the length of the prosthesis, making it consistent with the length of the side of the lower limbs. However, this prosthesis has some complications. The extendable prosthesis is classified into invasive and minimally invasive, which extends the prosthesis with each operation. OBJECTIVE: We designed a new non-invasive prosthesis that can be extended in the body. Based on the non-invasive and extendable characteristics, we need to verify the supporting performance of this prosthesis. METHODS: We carried out a mechanical testing method and finite element analysis simulation. CONCLUSION: The support performance and non-invasively extension of this prosthesis were verified.


2021 ◽  
Author(s):  
Yoshiaki Kataoka ◽  
Tomohiro Shimizu ◽  
Ryo Takeda ◽  
Shigeru Tadano ◽  
Yuki Saito ◽  
...  

Abstract Background: Hip osteoarthritis (OA) is a musculoskeletal condition that makes walking difficult due to pain induced by weight-bearing activities. Treadmills that support the body weight (BW) reduce the load on the lower limbs, and those equipped with a lower-body positive-pressure (LBPP) device, developed as a new method for unweighting, significantly reduce pain in patients with knee OA. However, the effects of unweighting on gait kinematics remain unclear in patients with hip OA. Therefore, we investigated the effects of unweighting on kinematics in patients with hip OA during walking on a treadmill equipped with an LBPP device. Methods: A total of 15 women with hip OA and 15 age-matched female controls wore a three-dimensional (3-D) motion analysis system and walked at a self-selected speed on the LBPP treadmill. Data regarding self-reported hip pain using a numeric rating scale (NRS) in which the scores 0 and 10 represented no pain and the worst pain, respectively, under three different BW conditions (100%, 75%, and 50%) were collected. Moreover, 3-D peak joint angles during gait under each condition were calculated and compared. Results: In the hip OA group, the NRS pain scores at 50% and 75% BW conditions significantly decreased compared with that at 100% BW condition (50%, P=0.002; 75%, P=0.026), and the peak hip extension angle decreased compared with that in the healthy controls (P=0.044). In both groups, unweighting significantly decreased the peak hip (P<0.001) and knee (P<0.001) flexion angles and increased the peak ankle plantar flexion angle (P<0.001) during walking. Conclusions: Unweighting by the LBPP treadmill decreased pain in the hip OA group but did not drastically alter the gait kinematics compared with that in the control group. Therefore, regarding the use of the LBPP treadmill for patients with hip OA, clinicians should consider the benefits of pain reduction rather than the kinematic changes.


2020 ◽  
pp. 204946372096141
Author(s):  
Sarah J Drabble ◽  
Jaqui Long ◽  
Blessing Alele ◽  
Alicia O’Cathain

Introduction: Prior research into endometriosis-related pain has focused on specific aspects of the pain experience such as cyclical pain, emotional aspects of pain and certain types of pain such as dysmenorrhea and dyspareunia. However, research has paid less attention to the diversity and complexity of women’s pain experiences, which can lead to failure to recognise some symptoms as part of endometriosis and poor symptom management. Methods: We conducted qualitative semi-structured face-to-face interviews with 20 women in the United Kingdom recruited from an endometriosis self-help group with a diagnosis of endometriosis via laparoscopy. A topic guide framed questions around experiences of pain. Interviews were audio-recorded and transcribed verbatim. Transcripts were analysed using inductive thematic analysis. Results: Women experienced multiple types of pain that they felt were caused by endometriosis and affected many different parts of the body including bowel, bladder, lungs, kidneys, nerves, upper body, lower limbs and head. These pains consisted of different conceptual categories: type, pattern and intensity. These categories came together to create a complex, interrelated experience for each individual that we termed ‘constellations of pain’ because each woman had a complex set of pain categories and no two individuals appeared to have the same pain experience. Conclusion: The complexity and diversity of endometriosis-related pain found in this study has implications for improving diagnosis, medical and non-medical pain management and improving the clinical encounter between women and healthcare professionals.


2020 ◽  
Author(s):  
Yoshiaki Kataoka ◽  
Tomohiro Shimizu ◽  
Ryo Takeda ◽  
Shigeru Tadano ◽  
Yuki Saito ◽  
...  

Abstract Background: Hip osteoarthritis (OA) is a musculoskeletal condition that makes walking difficult due to pain induced by weight-bearing activities. Treadmills that support the body weight (BW) reduce the load on the lower limbs, and those equipped with a lower-body positive-pressure (LBPP) device, developed as a new method for unweighting, significantly reduce pain in patients with knee OA. However, the effects of unweighting on gait kinematics remain unclear in patients with hip OA. Therefore, we investigated the effects of unweighting on kinematics in patients with hip OA during walking on a treadmill equipped with an LBPP device.Methods: A total of 15 women with hip OA and 15 age-matched female controls wore a three-dimensional (3-D) motion analysis system and walked at a self-selected speed on the LBPP treadmill. Data regarding self-reported hip pain using a numeric rating scale (NRS) in which the scores 0 and 10 represented no pain and the worst pain, respectively, under three different BW conditions (100%, 75%, and 50%) were collected. Moreover, 3-D peak joint angles during gait under each condition were calculated and compared.Results: In the hip OA group, the NRS pain scores at 50% and 75% BW conditions significantly decreased compared with that at 100% BW condition (50%, P=0.002; 75%, P=0.026), and the peak hip extension angle decreased compared with that in the healthy controls (P=0.044). In both groups, unweighting significantly decreased the peak hip (P<0.001) and knee (P<0.001) flexion angles and increased the peak ankle plantar flexion angle (P<0.001) during walking.Conclusions: Unweighting by the LBPP treadmill decreased pain in the hip OA group but did not drastically alter the gait kinematics compared with that in the control group. Therefore, regarding the use of the LBPP treadmill for patients with hip OA, clinicians should consider the benefits of pain reduction rather than the kinematic changes.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4221 ◽  
Author(s):  
Valeria Rosso ◽  
Valentina Agostini ◽  
Ryo Takeda ◽  
Shigeru Tadano ◽  
Laura Gastaldi

Overweight/obesity is a physical condition that affects daily activities, including walking. The main purpose of this study was to identify if there is a relationship between body mass index (BMI) and gait characteristics in young adults. 12 normal weight (NW) and 10 overweight/obese (OW) individuals walked at a self-selected speed along a 14 m indoor path. H-Gait system, combining seven inertial sensors (fixed on pelvis and lower limbs), was used to record gait data. Walking speed, spatio-temporal parameters and joint kinematics in 3D were analyzed. Differences between NW and OW and correlations between BMI and gait parameters were evaluated. Conventional spatio-temporal parameters did not show statistical differences between the two groups or correlations with the BMI. However, significant results were pointed out for the joint kinematics. OW showed greater hip joint angles in frontal and transverse planes, with respect to NW. In the transverse plane, OW showed a greater knee opening angle and a shorter length of knee and ankle trajectories. Correlations were found between BMI and kinematic parameters in the frontal and transverse planes. Despite some phenomena such as soft tissue artifact and kinematics cross-talk, which have to be more deeply assessed, current results show a relationship between BMI and gait characteristics in young adults that should be looked at in osteoarthritis prevention.


2016 ◽  
Vol 2 (1) ◽  
pp. 715-718 ◽  
Author(s):  
David Graurock ◽  
Thomas Schauer ◽  
Thomas Seel

AbstractInertial sensor networks enable realtime gait analysis for a multitude of applications. The usability of inertial measurement units (IMUs), however, is limited by several restrictions, e.g. a fixed and known sensor placement. To enhance the usability of inertial sensor networks in every-day live, we propose a method that automatically determines which sensor is attached to which segment of the lower limbs. The presented method exhibits a low computational workload, and it uses only the raw IMU data of 3 s of walking. Analyzing data from over 500 trials with healthy subjects and Parkinson’s patients yields a correct-pairing success rate of 99.8% after 3 s and 100% after 5 s.


2019 ◽  
Vol 31 (4) ◽  
pp. 578-594
Author(s):  
Shitan Wang ◽  
Xiuhua Wang ◽  
Yunyi Wang

Purpose The purpose of this paper is to determine the effects of clothing ease and body postures on the size and distribution of the air gap as well as the body coverage with the clothing. Design/methodology/approach Visual and quantitative analyses were conducted using a 3D body scanner and Geomagic Software. The air gap size and clothing area factor (fcl) in three test coverall and seven selected postures were calculated and compared. Findings The results indicated that both the clothing ease and body postures had a strong effect on the air gap and clothing coverage, especially the more complex the postures, the wider the range of influence. Nevertheless, these effects varied over body regions, being stronger at the lower body than the upper body. The air gap size at the left side of the body was generally larger than the right side. It was also found that the clothing coverage was linearly correlated with the air gap size and could be employed as an indicator to evaluate clothing protective capabilities. Practical implications The findings suggested that greater attention should be paid to the protection and flexibility at the lower body and asymmetrical distribution of the air gap should be considered in the future air gap modeling. Originality/value The outcomes provided useful information to improve the protective clothing and develop more realistic air gap models to simulate the heat and mass transfer.


Sign in / Sign up

Export Citation Format

Share Document