scholarly journals Qingxin Kaiqiao Fang Inhibits Aβ25-35-Induced Apoptosis in Primary Cultured Rat Hippocampal Neuronal Cells via the p38 MAPK Pathway: An Experimental Validation and Network Pharmacology Study

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Tian-Qi Wang ◽  
Xiao-Xiao Lai ◽  
Lu-Ting Xu ◽  
Yan Shen ◽  
Jian-Wei Lin ◽  
...  

Qingxin kaiqiao fang (QKF), a traditional Chinese medicine compound, has been applied to treat Alzheimer’s disease (AD) for many years and has exhibited remarkable effects. However, the underlying mechanism is still not explicit. The current study aims to investigate whether QKF exerts an antiapoptotic role through the p38 MAPK pathway in the course of AD. Network pharmacology analysis was applied to study the effective components, possible therapeutic targets, and AD-related pathway of QKF. Further, the AD cell model was established using amyloid-beta (Aβ)25-35 peptide and primary hippocampal neuronal cells extracted from newborn Sprague-Dawley rats. Microtubule-associated protein-2 (MAP-2) imaging was used to detect the morphology of hippocampal neurons. Western blot (WB) analysis was applied to detect the protein expression levels of p38 MAPK, p-p38 MAPK, Bcl-2, Bax, caspase-3, and cleaved caspase-3. Cell viability and apoptosis were determined using cell counting kit-8 (CCK-8) and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assays, respectively. SB203580 and U46619 were used to detect changes in cell morphology, cell viability, and apoptosis upon inhibiting or activating p38 MAPK. Our present work showed that QKF protects hippocampal neuronal morphology, enhances cell viability, and reduces the number of TUNEL-positive cells. In addition, our results showed that QKF increased the expression levels of antiapoptotic proteins and decreased the expression of proapoptotic proteins. QKF at 25 mg·mL−1 best inhibited neuronal apoptosis among the three doses of QKF by suppressing p38 MAPK activity. Collectively, QKF plays an antiapoptotic role via the p38 MAPK pathway.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Qin-He Yang ◽  
Yong-Jian Xu ◽  
Yi-Zhen Liu ◽  
Yin-Ji Liang ◽  
Gao-Fei Feng ◽  
...  

This study aimed to investigate the effects of Chaihu-Shugan-San (CSS), Shen-Ling-Bai-Zhu-San (SLBZS), and integrated recipe of the above two recipes on inflammatory markers and proteins involved in p38 MAPK pathway in Kupffer cells of NASH rats induced by high fat diet (HFD). Rats were administered at low or high dose of CSS, SLBZS, and integrated recipe except normal group and model group for 16 weeks. The levels of hepatic lipid, TNF-α, IL-1, and IL-6 in liver tissues were measured. Kupffer cells were isolated from livers to evaluate expressions of TLR4, p-p38 MAPK, and p38 MAPK by Western blotting. The results showed that the NASH model rats successfully reproduced typical pathogenetic and histopathological features. Levels of hepatic lipid and liver tissues inflammatory factors in high-dose SLBZS group and integrated recipe group were all lower than that of model group decreased observably. Expressions of TLR4, p-p38 MAPK, and p38 MAPK in Kupffer cells were decreased in all treatment groups, but there was no significant difference between treatment groups. The high-dose SLBZS group had the lowest expression levels of TLR4, and the most visible downtrend in the expression levels of p-p38 MAPK and p38 MAPK was found in the high-dose integrated recipe group. The ratio of p-p38 MAPK to total p38 MAPK protein was obviously increased in all treatment groups. Therefore, our study showed that the activation of p38 MAPK pathway in Kupffer cells might be related to the release of inflammatory factors such as TNF-α, IL-1, and IL-6 in NASH rats. High dose of SLBZS and integrated recipe might work as a significant anti-inflammatory effect in Kupffer cells of NASH rats induced by HFD through suppression of p38 MAPK pathway. It indicated that p38 MAPK pathway may be the possible effective target for the recipes.


2019 ◽  
Vol 39 (3) ◽  
Author(s):  
Qing Xu ◽  
Haolin Fang ◽  
Liang Zhao ◽  
Cunxin Zhang ◽  
Luo Zhang ◽  
...  

Abstract Mechanical overload is a risk factor of disc degeneration. It can induce disc degeneration through mediating cell apoptosis. Mechano growth factor (MGF) has been reported to inhibit mechanical overload-induced apoptosis of chondrocytes. The present study is aimed to investigate whether MGF can attenuate mechanical overload-induced nucleus pulposus (NP) cell apoptosis and the possible signaling transduction pathway. Rat NP cells were cultured and subjected to mechanical overload for 7 days. The control NP cells did not experience mechanical load. The exogenous MGF peptide was added into the culture medium to investigate its protective effects. NP cell apoptosis ratio, caspase-3 activity, gene expression of Bcl-2, Bax and caspase-3, protein expression of cleaved caspase-3, cleaved PARP, Bax and Bcl-2 were analyzed to evaluate NP cell apoptosis. In addition, activity of the p38 MAPK pathway was also detected. Compared with the control NP cells, mechanical overload significantly increased NP cell apoptosis and caspase-3 activity, up-regulated gene/protein expression of pro-apoptosis molecules (i.e. Bax, caspase-3, cleaved caspase-3 and cleaved PARP) whereas down-regulated gene/protein expression of anti-apoptosis molecule (i.e. Bcl-2). However, exogenous MGF partly reversed these effects of mechanical overload on NP cell apoptosis. Further results showed that activity of the p38 MAPK pathway of NP cells cultured under mechanical overload was decreased by addition of MGF peptide. In conclusion, MGF is able to attenuate mechanical overload-induced NP cell apoptosis, and the p38 MAPK signaling pathway may be involved in this process. The present study provides that MGF supplementation may be a promising strategy to retard mechanical overload-induced disc degeneration.


2018 ◽  
Vol 38 (2) ◽  
Author(s):  
Haolin Fang ◽  
Xianzhou Li ◽  
Haiming Shen ◽  
Buwei Sun ◽  
Haijun Teng ◽  
...  

Disc degeneration is correlated with mechanical load. Osteogenic protein-1 (OP-1) is potential to regenerate degenerative disc. To investigate whether OP-1 can protect against high magitude compression-induced nucleus pulposus (NP) cell apoptosis and NP matrix catabolism, and its potential mechanism; porcine discs were cultured in a bioreactor and compressed at a relatively high-magnitude mechanical compression (1.3 MPa at a frequency of 1.0 Hz for 2 h once per day) for 7 days. OP-1 was added along with the culture medium to investigate the protective effects of OP-1. NP cell apoptosis and matrix biosynthesis were evaluated. Additionally, activity of the p38 MAPK pathway is also analyzed. Compared with the control group, high magnitude compression significantly promoted NP cell apoptosis and decreased NP matrix biosynthesis, reflected by the increase in the number of terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive cells and caspase-3 activity, the up-regulated expression of Bax and caspase-3 mRNA and down-regulated expression of Bcl-2 mRNA, and the decreased Alcian Blue staining intensity and expression of matrix proteins (aggrecan and collagen II). However, OP-1 addition partly attenuated the effects of high magnitude compression on NP cell apoptosis and NP matrix biosynthesis. Further analysis showed that inhibition of the p38 MAPK pathway partly participated in this process. OP-1 can attenuate high magnitude compression-induced NP cell apoptosis and promoted NP matrix biosynthesis, and inhibition of the p38 MAPK pathway may participate in this regulatory process. The present study provides that OP-1 may be efficient in retarding mechanical overloading-exacerbated disc degeneration.


2018 ◽  
Vol 50 (5) ◽  
pp. 1687-1697 ◽  
Author(s):  
Yichun Xu ◽  
Hui Yao ◽  
Qiyou Wang ◽  
Wenbin Xu ◽  
Kaihua Liu ◽  
...  

Background/Aims: Previous studies have shown that oxidative damage is a main contributor to disc nucleus pulposus (NP) cell apoptosis. Aquaporin-3 (AQP-3) facilitates reactive oxygen species (ROS) scavenging and thus alleviates oxidative injury in other cells. This study aims to investigate the role and mechanism of AQP-3 in regulating NP cell apoptosis under oxidative damage. Methods: Rat NP cells were treated with H2O2 for 48 hours, while control NP cells were free of H2O2. Recombinant AQP-3 lentiviral vectors were used to investigate the effect of enhanced AQP-3 expression levels in NP cells. NP cell apoptosis was assessed by flow cytometry, caspase-3 activity, gene expression of apoptosis-related molecules (Bax, Bcl-2 and caspase-3), and protein expression of cellular apoptosis markers (cleaved PARP and cleaved caspase-3). Additionally, intracellular ROS content and activity of the p38 MAPK pathway were evaluated. Results: Compared with the control NP cells, oxidative damage in the treatment cells significantly increased cell apoptosis ratios and caspase-3 activity, upregulated gene expression of Bax and caspase-3, downregulated gene expression of Bcl-2, and increased protein expression of cleaved PARP and cleaved caspase-3, as well as increased intracellular ROS content and activity of the p38 MAPK pathway. However, AQP-3 overexpression partly alleviated cell apoptosis, decreased intracellular ROS content, and inhibited the p38 MAPK pathway in NP cells under oxidative damage. Conclusion: Oxidative damage can significantly downregulate AQP-3 expression. Enhancing AQP-3 expression in NP cells partly attenuates cellular apoptosis through regulating the p38 MAPK pathway under oxidative damage.


2017 ◽  
Vol 312 (2) ◽  
pp. C119-C130 ◽  
Author(s):  
Qunwen Pan ◽  
Xiaorong Liao ◽  
Hua Liu ◽  
Yan Wang ◽  
Yanfang Chen ◽  
...  

MicroRNA-125a-5p (miR-125a-5p) could participate in the pathogenesis of vascular diseases. In this study, we investigated the role of miR-125a-5p in oxidized low-density lipoprotein (ox-LDL)-induced functional changes in human brain microvessel endothelial cells (HBMEC). The reactive oxygen species (ROS) production, nitric oxide (NO) generation, senescence, apoptosis, and functions of HBMEC were analyzed. For mechanism study, the epidermal growth factor receptor (EGFR)/extracellular signal-regulated protein kinase (ERK)/p38 mitogen-activated protein kinase (p38 MAPK) pathway and phosphatidylinositol-3-kinase (PI3K)/serine/threonine kinase (Akt)/endothelial nitric oxide synthase (eNOS) pathway were analyzed. Results showed the following: 1) Expression of miR-125a-5p was reduced in ox-LDL-treated HBMEC. 2) Overexpression of miR-125a-5p protected HBMEC from ox-LDL-induced apoptosis, senescence, ROS production, and NO reduction. 3) Overexpression of miR-125a-5p increased HBMEC proliferation, migration, and tube formation, while decreasing HBMEC adhesion to leukocytes, as well as counteracting the effects of ox-LDL on those functions. 4) The levels of EGFR/ERK/p38 MAPK pathway, PI3K/Akt/eNOS pathway, cleaved caspase-3, and adherent molecular ICAM-1 and VCAM-1 were associated with the effects of ox-LDL on these HBMEC functions. In conclusion, miR-125a-5p could counteract the effects of ox-LDL on various HBMEC functions via regulating the EGFR/ERK/p38 MAPK and PI3K/Akt/eNOS pathways and cleaved caspase-3, ICAM-1, and VCAM-1 expression.


2008 ◽  
Vol 56 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Ewa Jablonska ◽  
Wioletta Ratajczak ◽  
Jakub Jablonski

2020 ◽  
Vol 20 (4) ◽  
pp. 307-317
Author(s):  
Yuan Yang ◽  
Jin Huang ◽  
Jianzhong Li ◽  
Huansheng Yang ◽  
Yulong Yin

Background: Butyric acid (BT), a short-chain fatty acid, is the preferred colonocyte energy source. The effects of BT on the differentiation, proliferation, and apoptosis of small intestinal epithelial cells of piglets and its underlying mechanisms have not been fully elucidated. Methods: In this study, it was found that 0.2-0.4 mM BT promoted the differentiation of procine jejunal epithelial (IPEC-J2) cells. BT at 0.5 mM or higher concentrations significantly impaired cell viability in a dose- and time-dependent manner. In addition, BT at high concentrations inhibited the IPEC-J2 cell proliferation and induced cell cycle arrest in the G2/M phase. Results: Our results demonstrated that BT triggered IPEC-J2 cell apoptosis via the caspase8-caspase3 pathway accompanied by excess reactive oxygen species (ROS) and TNF-α production. BT at high concentrations inhibited cell autophagy associated with increased lysosome formation. It was found that BT-reduced IPEC-J2 cell viability could be attenuated by p38 MAPK inhibitor SB202190. Moreover, SB202190 attenuated BT-increased p38 MAPK target DDIT3 mRNA level and V-ATPase mRNA level that were responsible for normal acidic lysosomes. Conclusion: In conclusion, 1) at 0.2-0.4 mM, BT promotes the differentiation of IPEC-J2 cells; 2) BT at 0.5 mM or higher concentrations induces cell apoptosis via the p38 MAPK pathway; 3) BT inhibits cells autophagy and promotes lysosome formation at high concentrations.


2019 ◽  
Vol 19 (9) ◽  
pp. 673-682 ◽  
Author(s):  
Panpan Chang ◽  
Yuzi Tian ◽  
Aaron M. Williams ◽  
Umar F. Bhatti ◽  
Baoling Liu ◽  
...  

Background: Histone deacetylase (HDAC) 6 inhibitors have demonstrated significant protective effects in traumatic injuries. However, their roles in neuroprotection and underlying mechanisms are poorly understood. This study sought to investigate the neuroprotective effects of Tubastatin A (Tub-A), an HDAC6 inhibitor, during oxygenglucose deprivation (OGD) in HT22 hippocampal cells. Methods: HT22 hippocampal cells were exposed to OGD. Cell viability and cytotoxicity were assessed by cell counting kit-8 (CCK-8) and lactate dehydrogenase (LDH) release assay. Cellular apoptosis was assessed by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Mitochondria membrane potential was detected using JC-1 dye. Expressions of acetylated α-tubulin, α-tubulin, cytochrome c, VDAC, Bax, Bcl- 2, cleaved caspase 3, phosphorylated Akt, Akt, phosphorylated GSK3β and GSK3β were analyzed by Western blot analysis. Results: Tub-A induced acetylation of α-tubulin, demonstrating appropriate efficacy. Tub-A significantly increased cell viability and attenuated LDH release after exposure to OGD. Furthermore, Tub-A treatment blunted the increase in TUNEL-positive cells following OGD and preserved the mitochondrial membrane potential. Tub-A also attenuated the release of cytochrome c from the mitochondria into the cytoplasm and suppressed the ratio of Bax/Bcl-2 and cleaved caspase 3. This was mediated, in part, by the increased phosphorylation of Akt and GSK3β signaling pathways. Conclusion: HDAC 6 inhibition, using Tub-A, protects against OGD-induced injury in HT22 cells by modulating Akt/GSK3β signaling and inhibiting mitochondria-mediated apoptosis.


Sign in / Sign up

Export Citation Format

Share Document