scholarly journals Study on the Multitarget Mechanism of Sanmiao Pill on Gouty Arthritis Based on Network Pharmacology

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Huiqin Qian ◽  
Qianqian Jin ◽  
Yichen Liu ◽  
Ning Wang ◽  
Yuru Chu ◽  
...  

Sanmiao pill (SMP), a Chinese traditional formula, had been used to treat gouty arthritis (GA). However, the active compounds and underlying mechanism remained unclear. Hence, network pharmacology and molecular docking were utilized to explore bioactive compounds and potential mechanism of action of SMP in treating GA. In the study, the compounds of SMP, corresponding targets, and GA-related targets were mined from various pharmacological databases. Then, herb-compound-target, compound-target, PPI, and target-pathway networks were constructed. Ultimately, molecular docking was carried out to verify the predicted results. The results indicated that 47 active compounds, 338 targets, and 144 disease targets were collected. Network analysis implied that Phellodendron chinense Schneid. played a vital role in the whole formula. Moreover, 7 compounds (quercetin, kaempferol, wogonin, rutaecarpine, baicalein, beta-sitosterol, and stigmasterol) and 4 targets (NFKB1, RELA, MAPK1, and TNF) might be the kernel compounds and targets of SMP against GA. According to GOBP and KEGG pathway enrichment analysis and target-pathway network, SMP might exert a therapeutic role in GA by regulating numerous biological processes and pathways, including lipopolysaccharide-mediated signaling pathway, positive regulation of transcription, Toll-like receptor signaling pathway, JAK-STAT signaling pathway, NOD-like receptor signaling pathway, and MAPK signaling pathway. The results of molecular docking showcased that 11 pairs of compound with targets had tight binding strength. Thereinto, 4 compounds of MAPK1 and 5 compounds of NFKB1 possessed a better combination, suggesting that MAPK1 and NFKB1 might be considered as therapeutic targets in treatment of GA. This study verified that SMP had synergistic effect on GA by multicomponents, multitargets, and multipathways.

2020 ◽  
Author(s):  
Rong-Bin Chen ◽  
Ying-Dong Yang ◽  
Kai Sun ◽  
Shan Liu ◽  
Wei Guo ◽  
...  

Abstract Background: Postmenopausal osteoporosis (PMOP) is a global chronic and metabolic bone disease, which poses huge challenges to individuals and society. Ziyin Tongluo Formula (ZYTLF) has been proved effective in the treatment of PMOP. However, the material basis and mechanism of ZYLTF against PMOP have not been thoroughly elucidated.Methods: Online databases were used to identify the active ingredients of ZYTLF and corresponding putative targets. Genes associated with PMOP were mined, and then mapped with the putative targets to obtain overlapping genes. Multiple networks were constructed and analyzed, from which the key genes were selected. The key genes were imported to the DAVID database to performs GO and KEGG pathway enrichment analysis. Finally, AutoDock Tools and other software were used for molecular docking of core compounds and key proteins. Results: Ninety-two active compounds of ZYTLF corresponded to 243 targets, with 129 target genes interacting with PMOP, and 50 key genes were selected. Network analysis showed the top 5 active ingredients including quercetin, kaempferol, luteolin, scutellarein, and formononetin., and the top 50 key genes such as VEGFA, MAPK8, AKT1, TNF, ESR1. Enrichment analysis uncovered two significant types of KEGG pathways in PMOP, hormone-related signaling pathways (estrogen , prolactin, and thyroid hormone signaling pathway) and inflammation-related pathways (TNF, PI3K-Akt, and MAPK signaling pathway). Moreover, molecular docking analysis verified that the main active compounds were tightly bound to the core proteins, further confirming the anti-PMOP effects. Conclusions: Based on network pharmacology and molecular docking technology, this study initially revealed the mechanisms of ZYTLF on PMOP, which involves multiple targets and multiple pathways.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Zhencheng Xiong ◽  
Can Zheng ◽  
Yanan Chang ◽  
Kuankuan Liu ◽  
Li Shu ◽  
...  

Objective. The purpose of this work is to study the mechanism of action of Duhuo Jisheng Decoction (DHJSD) in the treatment of osteoporosis based on the methods of bioinformatics and network pharmacology. Methods. In this study, the active compounds of each medicinal ingredient of DHJSD and their corresponding targets were obtained from TCMSP database. Osteoporosis was treated as search query in GeneCards, MalaCards, DisGeNET, Therapeutic Target Database (TTD), Comparative Toxicogenomics Database (CTD), and OMIM databases to obtain disease-related genes. The overlapping targets of DHJSD and osteoporosis were identified, and then GO and KEGG enrichment analysis were performed. Cytoscape was employed to construct DHJSD-compounds-target genes-osteoporosis network and protein-protein interaction (PPI) network. CytoHubba was utilized to select the hub genes. The activities of binding of hub genes and key components were confirmed by molecular docking. Results. 174 active compounds and their 205 related potential targets were identified in DHJSD for the treatment of osteoporosis, including 10 hub genes (AKT1, ALB, IL6, MAPK3, VEGFA, JUN, CASP3, EGFR, MYC, and EGF). Pathway enrichment analysis of target proteins indicated that osteoclast differentiation, AGE-RAGE signaling pathway in diabetic complications, Wnt signaling pathway, MAPK signaling pathway, PI3K-Akt signaling pathway, JAK-STAT signaling pathway, calcium signaling pathway, and TNF signaling pathway were the specifically major pathways regulated by DHJSD against osteoporosis. Further verification based on molecular docking results showed that the small molecule compounds (Quercetin, Kaempferol, Beta-sitosterol, Beta-carotene, and Formononetin) contained in DHJSD generally have excellent binding affinity to the macromolecular target proteins encoded by the top 10 genes. Conclusion. This study reveals the characteristics of multi-component, multi-target, and multi-pathway of DHJSD against osteoporosis and provides novel insights for verifying the mechanism of DHJSD in the treatment of osteoporosis.


2020 ◽  
Author(s):  
Xiao Song ◽  
Fei Guo ◽  
Xiao-Chen Sun ◽  
Shu-Yue Wang ◽  
Yao-Hui Yuan ◽  
...  

Abstract Background: Leukemia was listed by the World Health Organization as one of the five most intractable diseases in the world. The multi-drug resistance (MDR) of leukemia cells limits the efficacy of anti-tumor drugs and is the major reason for the chemotherapy failure and recurrence of leukemia chemotherapy. Some studies have shown that Euphorbiae semen (ES) possesses the characteristics of new therapeutic drugs for MDR. However, the molecular mechanisms and active compounds have not yet been fully clarified. Therefore, there is a need for explore its active compounds and demonstrate its mechanisms through network pharmacology and molecular docking technology.Method: First, the TCMSP database was searched and screened the active compounds of the ES, supplemented with compounds verified by literature, so as to further identify the core compounds in the active ingredient. Simultaneously, the TCMSP and Swiss database were searched to the targets of active compounds, and the targets of reverses leukemia multidrug resistance (RL-MDR) were screened in the relevant databases, such as GeneCards and DrugBank. Then, the targets of active compounds were intersected with RL-MDR targets to obtain potential targets of ES acting on MDR. The compound–target network was constructed by Cytoscape. The target protein–protein interaction network was built using STRING and Cytoscape database. Second, the R language and DAVID database were used to analyse Gene Ontology (GO) biological functions analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathways enrichment. Finally, molecular docking method was utilized to investigate the binding activity between the core targets and the active compounds of ES.Results: Compound–target network mainly contained 22 compounds and 81 corresponding targets. Finally, seven components in ES were selected and 10 core targets were identified; Key targets contained JUN, CASP3, MAOA, AR, PPARG, DRD2, ADRA2A, CHRM2, PTGS2 and MAPK14. GO enrichment analysis indicated the main biological functions of potential genes of ES in the treatment of MDR. KEGG pathway enrichment analysis showed the main pathways, mainly including apoptosis, pathways in cancer, p53 signaling pathway, VEGF signaling pathway, TNF signaling pathway and PI3K–Akt signaling pathway. Finally, we chose the top 10 common targets for molecular docking with the 7 active compounds of ES. The results of molecular docking indicated that the compounds of ES, which had good affinity with targets. Conclusion: The molecular mechanism of ES in the treatment of MDR showed the synergistic reaction of multi-compound, multi-target, and multi-pathway of traditional Chinese medicine, which provided ideas for further clinical research.


Author(s):  
Qiguo Wu ◽  
Yeqing Hu

Background: Diabetes mellitus is one of the most common endocrine metabolic disorder diseases. The application of herbal medicine to control glucose levels and improve insulin action might be a useful approach in the treatment of diabetes. Mulberry leaves (ML) has been reported to exert important activities of anti-diabetic. Objective: In this work, we aimed to explore the multi-targets and multi-pathways regulatory molecular mechanism of Mulberry leaves (ML, Morus alba Linne) acting on diabetes. Methods: Identification of active compounds of Mulberry leaves using Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Bioactive components were screened by FAF-Drugs4 website (Free ADME-Tox Filtering Tool). The targets of bioactive components were predicted from SwissTargetPrediction website, and the diabetes related targets were screened from GeneCards database. The common targets of ML and diabetes are used for Gene Ontology (GO) and pathway enrichment analysis. The visualization networks were constructed by Cytoscape 3.7.1 software. The construction of biological networks were performed to analyze the mechanisms as follows: (1) Compound-Target network; (2) Common target-Compound network; (3) Common targets protein interaction network; (4) Compound-Diabetes protein-protein interactions (PPI) network; (5) Target-Pathway network; (6) Compound-Target-Pathway network. At last, the prediction results of network pharmacology were verified by molecular docking method. Results: 17 active components were obtained by TCMSP database and FAF-Drugs4 website. 51 potential targets (11 common targets and 40 associated indirect targets) were obtained and used to build the PPI network by String database. Furthermore, the potential targets were used to GO and pathway enrichment analysis. 8 key active compounds (quercetin, Iristectorigenin A, 4-Prenylresveratrol, Moracin H, Moracin C, Isoramanone, Moracin E and Moracin D) and 8 key targets (AKT1, IGF1R, EIF2AK3, PPARG, AGTR1, PPARA, PTPN1 and PIK3R1) were obtained to play major roles in Mulberry leaf acting on diabetes. And the signal pathways involved in the mechanisms mainly include AMPK signaling pathway, PI3K-Akt signaling pathway, mTOR signaling pathway, insulin signaling pathway and insulin resistance. The molecular docking results show that the 8 key active compounds have good affinity with the key target of AKT1, and the 5 key targets (IGF1R, EIF2AK3, PPARG, PPARA and PTPN1) have better affinity than AKT1 with the key compound of quercetin. Conclusion: Based on network pharmacology and molecular docking of this work provided an important systematic and visualized basis for further understanding the synergy mechanism of ML acting on diabetes.


2020 ◽  
Author(s):  
Shijia Guo ◽  
Xinan Zhang ◽  
mingli Sun

Abstract Background Scutellarin was reported to exerted inhibitive effects on osteoarthritis, However, the detailed mechanisms remain unclear. In this study, we investigated underlying multi-target mechanisms of scutellarin against osteoarthritis by using network pharmacology analysis and molecular docking. Results Scutellarin exerted inhibitive effects on osteoarthritis by regulating the function of several new signaling pathways, such as TNF signaling pathway, NOD-like receptor signaling pathway and HIF-1 signaling pathway. Molecular docking analysis showed there was better interaction between scutellarin and several NF-kB signaling proteins, including NFKBIA, RELA and NFKB1. In addition, the results showed Pi-cation, Pi-donor-hydrogen and Pi-alkyl were the main forms of interaction between scutellarin and NFKB1 and NFKBIA, Pi-Pi T-shaped, Pi-alkyl and hydrogen bonding were the main forms of interaction between scutellarin and RELA. Conclusion Taken together, TNF signaling pathway, NOD-like receptor signaling pathway and HIF-1 signaling pathway were possible signaling pathways, NFKBIA, RELA and NFKB1were possible targets associated with the activities of scutellarin against osteoarthritis. However, it is imperative that these targets should be thoroughly verified by in vitro and in vivo experiments.


2022 ◽  
Vol 2022 ◽  
pp. 1-20
Author(s):  
Sijie Li ◽  
Yong Yang ◽  
Wei Zhang ◽  
Haiyan Li ◽  
Wantong Yu ◽  
...  

Purpose. Danggui Shaoyao San (DSS) was developed to treat the ischemic stroke (IS) in patients and animal models. The purpose of this study was to explore its active compounds and demonstrate its mechanism against IS through network pharmacology, molecular docking, and animal experiment. Methods. All the components of DSS were retrieved from the pharmacology database of TCM system. The genes corresponding to the targets were retrieved using OMIM, CTD database, and TTD database. The herb-compound-target network was constructed by Cytoscape software. The target protein-protein interaction network was built using the STRING database. The core targets of DSS were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Then, we achieved molecular docking between the hub proteins and the key active compounds. Finally, animal experiments were performed to verify the core targets. Triphenyltetrazolium chloride (TTC) staining was used to calculate the infarct size in mice. The protein expression was determined using the Western blot. Results. Compound-target network mainly contained 51 compounds and 315 corresponding targets. Key targets contained MAPK1, SRC, PIK3R1, HRAS, AKT1, RHOA, RAC1, HSP90AA1, and RXRA FN1. There were 417 GO items in GO enrichment analysis ( p < 0.05 ) and 119 signaling pathways ( p < 0.05 ) in KEGG, mainly including negative regulation of apoptosis, steroid hormone-mediated signaling pathway, neutrophil activation, cellular response to oxidative stress, and VEGF signaling pathway. MAPK1, SRC, and PIK3R1 docked with small molecule compounds. According to the Western blot, the expression of p-MAPK 1, p-AKT, and p-SRC was regulated by DSS. Conclusions. This study showed that DSS can treat IS through multiple targets and routes and provided new insights to explore the mechanisms of DSS against IS.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Juan Zhang ◽  
Hong Chen ◽  
Yuancheng Bao ◽  
Daojun Xie ◽  
Wenming Yang ◽  
...  

Ethnopharmacological Relevance. GanDouLing (GDL) is a Chinese medicinal herb produced by the preparation center of Anhui Hospital of TCM for preventing and treating Wilson’s disease (WD), an ATP7B mutation-inherited disease that affects copper transport and is characterized by liver and nervous system manifestations with variable and often unpredictable manifestations. However, the “multicomponent” and “multitarget” characteristics of TCM make it challenging to clarify the potential therapeutic mechanisms of GDL for WD. Aim of the Study. This study aimed at the systematic encoding of WD potential target for GDL and experimental verification for the relevant core targets, providing a deeper insight into the understanding of the mechanisms of GDL protection underlying WD with liver injury. Material and Methods. Following the strategy of the network pharmacology, we, firstly, predicted the active components of GDL and putative targets for WD. By employing clusterProfiler, the enrichment of functional and pathway terms was analyzed. Further, the protein-protein-interaction network was analyzed by STRING. Lastly, after establishing the toxic-milk mouse (TX) model with GDL treating, Hematoxylin and Eosin stain (HE) and western blotting (WB) for apoptosis biomarker were experimented. Results. Firstly, 324 active compounds have been identified in the GDL formula. Meanwhile, we identified 1496 human genes which are related to WD or liver cirrhosis. Functional and pathway enrichment analysis indicated that NOD-like receptor signaling pathway, bile secretion, calcium signaling pathway, steroid hormone biosynthesis, T cell receptor signaling pathway, apoptosis, MAPK signaling pathway, and so forth can be obviously regulated by GDL. Further, in a mouse model of WD, in vivo experiments showed that GDL treatment can not only reduce the pathological symptoms of the liver but also reduce the apoptosis of hepatocytes. Conclusions. In this study, systemic pharmacological methods were proposed and the mechanism of GDL combined therapy for WD was explored. This method can be used as a reference for the study of other mechanisms of traditional Chinese medicine.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yanan Shi ◽  
Mingqi Chen ◽  
Zehua Zhao ◽  
Juhua Pan ◽  
Shijing Huang

Objective. We aimed to investigate the mechanisms underlying the effects of the Cyperi Rhizoma-Chuanxiong Rhizoma herb pair (CCHP) against depression using a network pharmacology approach. Methods. A network pharmacology approach, including screening of active compounds, target prediction, construction of a protein-protein interaction (PPI) network, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and molecular docking, molecular dynamics (MD) simulations, and molecular mechanics Poisson–Boltzmann surface area (MMPBSA), were used to explore the mechanisms of CCHP against depression. Results. Twenty-six active compounds and 315 and 207 targets of CCHP and depression, respectively, were identified. The PPI network suggested that AKT1, IL-6, TP53, DRD2, MAPK1, NR3C1, TNF, etc., were core targets. GO enrichment analyses showed that positive regulation of transcription from RNA polymerase II promoter, plasma membrane, and protein binding were of great significance. Neuroactive ligand-receptor interaction, PI3K-Akt signaling pathway, dopaminergic synapse, and mTOR signaling pathway were important pathways. Molecular docking results revealed good binding affinities for the core compounds and core targets. MD simulations and MMPBSA validated that quercetin can stably bind to 6hhi. Conclusions. The effects of CCHP against depression involve multiple components, targets, and pathways, and these findings will promote further research on and clinical application of CCHP.


2019 ◽  
Vol 22 (6) ◽  
pp. 411-420 ◽  
Author(s):  
Xian-Jun Wu ◽  
Xin-Bin Zhou ◽  
Chen Chen ◽  
Wei Mao

Aim and Objective: Cardiovascular disease is a serious threat to human health because of its high mortality and morbidity rates. At present, there is no effective treatment. In Southeast Asia, traditional Chinese medicine is widely used in the treatment of cardiovascular diseases. Quercetin is a flavonoid extract of Ginkgo biloba leaves. Basic experiments and clinical studies have shown that quercetin has a significant effect on the treatment of cardiovascular diseases. However, its precise mechanism is still unclear. Therefore, it is necessary to exploit the network pharmacological potential effects of quercetin on cardiovascular disease. Materials and Methods: In the present study, a novel network pharmacology strategy based on pharmacokinetic filtering, target fishing, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, compound-target-pathway network structured was performed to explore the anti- cardiovascular disease mechanism of quercetin. Results:: The outcomes showed that quercetin possesses favorable pharmacokinetic profiles, which have interactions with 47 cardiovascular disease-related targets and 12 KEGG signaling pathways to provide potential synergistic therapeutic effects. Following the construction of Compound-Target-Pathway (C-T-P) network, and the network topological feature calculation, we obtained top 10 core genes in this network which were AKT1, IL1B, TNF, IL6, JUN, CCL2, FOS, VEGFA, CXCL8, and ICAM1. KEGG pathway enrichment analysis. These indicated that quercetin produced the therapeutic effects against cardiovascular disease by systemically and holistically regulating many signaling pathways, including Fluid shear stress and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, MAPK signaling pathway, IL-17 signaling pathway and PI3K-Akt signaling pathway.


2021 ◽  
Vol 29 ◽  
pp. 239-256
Author(s):  
Qian Wang ◽  
Lijing Du ◽  
Jiana Hong ◽  
Zhenlin Chen ◽  
Huijian Liu ◽  
...  

BACKGROUND: Shanmei Capsule is a famous preparation in China. However, the related mechanism of Shanmei Capsule against hyperlipidemia has yet to be revealed. OBJECTIVE: To elucidate underlying mechanism of Shanmei Capsule against hyperlipidemia through network pharmacology approach and molecular docking. METHODS: Active ingredients, targets of Shanmei Capsule as well as targets for hyperlipidemia were screened based on database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed via Database for Annotation, Visualization, and Integrated Discovery (DAVID) 6.8 database. Ingredient-target-disease-pathway network was visualized utilizing Cytoscape software and molecular docking was performed by Autodock Vina. RESULTS: Seventeen active ingredients in Shanmei Capsule were screened out with a closely connection with 34 hyperlipidemia-related targets. GO analysis revealed 40 biological processes, 5 cellular components and 29 molecular functions. A total of 15 signal pathways were enriched by KEGG pathway enrichment analysis. The docking results indicated that the binding activities of key ingredients for PPAR-α are equivalent to that of the positive drug lifibrate. CONCLUSIONS: The possible molecular mechanism mainly involved PPAR signaling pathway, Bile secretion and TNF signaling pathway via acting on MAPK8, PPARγ, MMP9, PPARα, FABP4 and NOS2 targets.


Sign in / Sign up

Export Citation Format

Share Document