scholarly journals Experimental Study on SSRC under Eccentric Compression

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Qingfu Li ◽  
Tianjing Zhang ◽  
Yaqian Yan ◽  
Qunhua Xiang

The use of stainless steel bars can improve the durability and sustainability of building materials. Through the static performance test, this research analyzes the failure pattern and bearing performance of bias stainless steel reinforced concrete (SSRC) column. The influence of reinforcement ratio of longitudinal bars and eccentricity on the mechanical performance of specimens was studied. Different constitutive models of stainless steel bars were used to calculate the ultimate bearing capacity of the section of the column under eccentric compression column. Based on the experimental results, a method to modify the expression of the design specification is proposed. And, the results were compared with the test results. The results showed that the damage patterns and failure modes of SSRC columns are essentially the same as those of traditional reinforced concrete columns. The bearing capacity of SSRC columns rises with the increase in the longitudinal reinforcement ratio, and the ductility of the specimens is enhanced. The ultimate load of the specimen decreases with the rise in eccentricity but the deflection increases gradually. The strain distribution of the mid-span section of the SSRC column conforms to the plane section assumption. The bearing capacity of the specimen can be analyzed by referring to the calculation method of the specification, and some parameters in the calculation formula of the specification are modified to adapt to the design and calculation of the SSRC column.

2020 ◽  
Vol 10 (16) ◽  
pp. 5629
Author(s):  
Qingfu Li ◽  
Yihang Kuang ◽  
Wei Guo ◽  
Yanlong Zhang

To study the mechanical properties of stainless-steel-reinforced concrete (SSRC) columns under eccentric compression, one ordinary reinforced concrete column and eight SSRC columns were designed for eccentric compression load tests. The eccentricity and reinforcement ratio were considered as the variation parameters. The cracking and failure modes of the SSRC columns were studied. The effects of the variation parameters on the longitudinal strain, concrete strain, lateral displacement, and ultimate load were analyzed. The test results demonstrated that the failure modes of SSRC columns under eccentric compression are similar to those of ordinary reinforced columns. Eccentricity significantly affected the failure modes of the SSRC columns. Under the same eccentricity, the reinforcement ratio had negligible effect on the lateral displacement corresponding to the ultimate load. The mechanical properties of SSRC columns under small eccentric compression were better than expected; however, the ultimate loads under large eccentric compression were proposed. The ultimate load–bending moment curves obtained were consistent with the results of the test and finite element analysis. Based on the experimental results, the force characteristic coefficient was set as 2.7 for calculating the long-term crack width.


2020 ◽  
Vol 12 (5) ◽  
pp. 168781402092488
Author(s):  
Bo Wu ◽  
Shixiang Xu

Horizontal impact tests of stainless steel–reinforced concrete piers with different reinforcement ratios at different impact velocities were carried out by using the ultra-high drop weight impact test system. Degree of piers damage after impact was comprehensively analyzed by measuring the acceleration of the impact body, the displacement of the top of the pier specimens, the strain of the steel bars, the rotation of the pier bottom, and the crack development of concrete. The test results showed that under the same impact velocity, with the decrease in reinforcement ratio, the peak acceleration of the impact body, the displacement of the top of pier specimens, the strain of steel bars, and the pier bottom rotation all increase. To a certain extent, increasing the reinforcement ratio of bridge piers can effectively reduce impact damage.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 979 ◽  
Author(s):  
Margherita Pauletta ◽  
Nicola Rovere ◽  
Norbert Randl ◽  
Gaetano Russo

Maintenance of reinforced concrete structures is a prevailing topic, especially with regard to lifeline structures and bridges, many of which are now designed with a service life beyond 100 years. Reinforcement made of ordinary (carbon) steel may corrode in aggressive environments. Stainless steel, being much more resistant to corrosion, is a valid solution to facilitate the protection of the works, increasing the service life and reducing the need for repair and maintenance. Despite the potential for stainless steel to reduce maintenance costs, studies investigating the influence of stainless steel on the behavior of reinforced concrete structures are limited. This study investigated the bond behavior of stainless steel rebars by means of experimental tests on reinforced concrete specimens with different concrete cover thicknesses, concrete strengths, and bar diameters. In each case, identical specimens with carbon steel reinforcement were tested for comparison. The failure modes of the specimens were examined, and a bond stress–slip relationship for stainless steel bars was established. This research shows that the bond behavior of stainless steel rebars is comparable to that of carbon steel bars.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Nan Guo ◽  
Mingtao Wu ◽  
Ling Li ◽  
Guodong Li ◽  
Yan Zhao

The limited transferring moment capability of Glulam (glued laminated wood) joints results in insufficient joint stiffness. Therefore, most of the connections are hinged joints. Based on the previous studies, one novel end-connection device was proposed to form prestressed continuous Glulam beams. The prestressed beams were composed of prestressed low-relaxation steel bars, the deviator block, the anchorage device, and the novel end-connection apparatus. These prestressed steel bars were tensioned by the deviator block to exert prestress. Then, 18 prestressed continuous beams and two prestressed simply supported beams were subject to the bending tests to explore the impact of reinforcement ratio and prestress on the prestressed Glulam beams from aspects such as failure modes, bearing capacity, load-deflection relationship, and load-strain relationship. The results show that, given the same prestress level, compared with beams with a reinforcement ratio of 1.92%, the bearing capacity of beams with a reinforcement ratio of 3.84% and 5.76% is increased by 20.3%–29.4% and 30.51%–36.36%, respectively. Given the same reinforcement ratios, compared with beams without prestressing, the bearing capacity of beams with a prestressing force of 7 kN and 14 kN is increased by 2.39%–10.14% and 6.49%–13.26%, respectively. In addition, compared with simply supported beams, the bearing capacity of continuous beams is increased by 40%, and the deformation is reduced by 13%. Therefore, as a novel prestressed beam, the bending performance of Glulam beams can be improved effectively.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3255 ◽  
Author(s):  
Fang Yuan ◽  
Mengcheng Chen

Fibre-reinforced polymer (FRP)-reinforced concrete members exhibit low ductility due to the linear-elastic behaviour of FRP materials. Concrete members reinforced by hybrid FRP–steel bars can improve strength and ductility simultaneously. In this study, the plastic hinge problem of hybrid FRP–steel reinforced concrete beams was numerically assessed through finite element analysis (FEA). Firstly, a finite element model was proposed to validate the numerical method by comparing the simulation results with the test results. Then, three plastic hinge regions—the rebar yielding zone, concrete crushing zone, and curvature localisation zone—of the hybrid reinforced concrete beams were analysed in detail. Finally, the effects of the main parameters, including the beam aspect ratio, concrete grade, steel yield strength, steel reinforcement ratio, steel hardening modulus, and FRP elastic modulus on the lengths of the three plastic zones, were systematically evaluated through parametric studies. It is determined that the hybrid reinforcement ratio exerts a significant effect on the plastic hinge lengths. The larger the hybrid reinforcement ratio, the larger is the extent of the rebar yielding zone and curvature localisation zone. It is also determined that the beam aspect ratio, concrete compressive strength, and steel hardening ratio exert significant positive effects on the length of the rebar yielding zone.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Md. Akter Hosen ◽  
Mohd Zamin Jumaat ◽  
A. B. M. Saiful Islam

Nowadays, the use of near surface mounted (NSM) technique strengthening reinforced concrete (RC) structural members is going very popular. The failure modes of NSM strengthened reinforced concrete (RC) beams have been shown to be largely due to premature failure such as concrete cover separation. In this study, CFRP U-wrap end anchorage with CFRP fabrics was used to eliminate the concrete cover separation failure. A total of eight RC rectangular beam specimens of 125 mm width, 250 mm depth, and 2300 mm length were tested. One specimen was kept unstrengthened as a reference; three specimens were strengthened with NSM steel bars and the remaining four specimens were strengthened with NSM steel bars together with the U-wrap end anchorage. The experimental results showed that wrapped strengthened beams had higher flexural strength and superior ductility performance. The results also show that these beams had less deflection, strain, crack width, and spacing.


2019 ◽  
Vol 138 ◽  
pp. 01001
Author(s):  
A Zhang ◽  
G Shangguan ◽  
Yanxia Zhang ◽  
Dinan Shao

The numerical simulation analysis of the two groups of fullscale complex tubular joints of the Beijing New Airport Terminal C type steel column under space static loading tests has been conducted by adopting software ABAQUS. The results obtained from the numerical simulation analysis consistent with those from the tests which enriched the research findings. Based on the research, mechanical performance of the joints has been carried out, the failure modes and ultimate bearing capacity of the joints with no stiffening ribs, three stiffening ribs and five stiffening ribs has been obtained. The numerical simulation results showed that, the bearing capacity of the joints without stiffening ribs were relatively low, the plastic failure of the main pipe was the major form of the destruction and the safety performance were too poor to meet the actual needs of the project. The bearing capacity of the joints significantly improved with the stiffening ribs set inside and the destruction changed to the connection of the main tubular and the branch, which means that the stress of the joints has been obviously improved by the setting of the stiffening ribs and was able to meet the needs of Beijing New Airport Terminal C type column. Through the comparative analysis of the stiffening ribs setting, it can be found that the bearing capacity of the joints were similar between the three and five stiffening ribs, considering the construction difficulty and economic benefits, three stiffening ribs has been selected as the final optimization result.


2012 ◽  
Vol 446-449 ◽  
pp. 98-101
Author(s):  
Chun Xia Li ◽  
Zhi Sheng Ding ◽  
Shi Lin Yan

The balanced reinforcement ratio of FRP-reinforced concrete members and the flexural capacity under two different failure modes (concrete crushing and FRP rupture) are established, based on the analysis on flexural capacity of steel-reinforced concrete members in current concrete code. The effect of material properties on the balanced ratio, the variation of flexural capacity with different reinforcement ratio and a simplified nominal flexural capacity under FRP-rupture failure are derived.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Xiwu Zhou ◽  
Honglong Zhang ◽  
Wenchao Zhang ◽  
Guoxue Zhang

In the present study, in order to examine the impact performances of ordinary reinforced concrete bridge piers which have been replaced by stainless-steel bars of equal cross-sections under the protective condition of anticollision material, the impact dynamic responses of the ordinary reinforced concrete bridge piers, with replacements under the protection of closed-cell aluminum foam, were compared and analyzed using an ultrahigh drop hammer impact test system. The results showed that when the impact velocity was small (for example, less than 1.42 M/s), after the implementation of equal cross-sectional replacements, the closed-cell aluminum foam had been in an elastic or yield stage. During that stage, the impact forces of the stainless-steel reinforced concrete piers were larger than those of the ordinary reinforced concrete piers, and the relative ratios were stable at approximately 28 to 34%. In addition, the relative ratios of the displacements at the tops of the components were also found to be stable at approximately 22%, and the change rates of the concrete ultrasonic damages were approximately the same. However, when the impact forces had increased (for example, more than 1.67 m/s), the closed-cell aluminum foam entered a densification stage, and the peak impact force ratios decreased sharply. It was also observed that the relative peak displacement ratios at the tops of the components displayed increasing trends, and the change rates of the concrete ultrasonic damages had displayed major flux. Therefore, the replacement of the ordinary piers with stainless-steel bars had increased the possibility of shear failures.


2020 ◽  
Vol 20 (06) ◽  
pp. 2040007
Author(s):  
Limeng Zhu ◽  
Haipeng Yan ◽  
Po-Chien Hsiao ◽  
Jianhua Zhang

An innovative composite vertical connecting structure (CVC) with capacity carrying and energy-dissipating ability is proposed in this study, which could be used in prefabricated composite shear wall structural systems to enhance the resilience and seismic performance of structural system. The CVC structure is mainly composed of three parts, including the connecting zone, the capacity bearing zone characterized by high strength and elastic deforming ability, and the energy-dissipating zone assembled by replaceable metal dampers. The low-yield strength steel and high-strength steel are used, respectively, for the metal dampers in the energy-dissipating zone and the concrete-filled high-strength steel tubes in the bearing capacity zone to enhance the energy dissipation and self-centering abilities of CVC structures. The working mechanism is analyzed and validated through finite element models built in ABAQUS. The hysteretic behavior is simulated to evaluate their performance. First, the metal dampers are designed. The theoretical and finite elemental parametric analysis are carried out. According to the simulation results, the “Z-shaped” metal dampers exhibit better energy-dissipating ability than the rectangular shape, in which the “Z-shaped” metal dampers with 45∘ show the best performance. Simultaneously, the results of the models calculated by the finite element method and theoretical analysis work very well with each other. Furthermore, seven FE models of shear walls with CVC structures are designed. Monotonic and cyclic loading simulations are conducted. The failure modes and comprehensive mechanical performance are investigated and evaluated according to their calculated force–displacement curves, skeleton curves, and ductility coefficients. The results indicate that the CVC structure delivered preferable lateral-bearing capacity and displacement ductility. Finally, according to available design standards, the lateral stiffness of CVC structures could be conventionally controlled and some practical design recommendations are discussed.


Sign in / Sign up

Export Citation Format

Share Document