scholarly journals miR-10b-5p Suppresses the Proliferation and Invasion of Primary Hepatic Carcinoma Cells by Downregulating EphA2

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xu Niu ◽  
Haitao Sun ◽  
Feng Qiu ◽  
Jing Liu ◽  
Tianchi Yang ◽  
...  

Objective. To analyze the function of miR-10b-5p in suppressing the invasion and proliferation of primary hepatic carcinoma cells by downregulating erythropoietin-producing hepatocellular receptor A2 (EphA2). Material and Methods. Eighty-six hepatic carcinoma (HCC) tissue specimens and 86 corresponding adjacent tissue specimens were collected, and the mRNA expression of miR-10b-5p and Ephrin type-A receptor 2 (EphA2) in the specimens was determined using a reverse transcription-polymerase chain reaction (RT-PCR) assay. Western blot was employed to quantify EphA2, B-cell chronic lymphocytic leukemia/lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), and Caspase-3 in the cells, and CCK8, Transwell assay, and flow cytometry were applied to evaluate the proliferation, invasion, and apoptosis of cells, respectively. Moreover, the dual luciferase reporter assay was utilized for correlation analysis between miR-10b-5p and EphA2. Results. miR-10b-5p was lowly expressed in HCC, while EphA2 was highly expressed. Cell experiments revealed that miR-10b-5p overexpression or EphA2 knockdown could reduce cell proliferation, accelerate apoptosis, strongly upregulate Bax and Caspase-3, and downregulate Bcl-2. In contrast, miR-10b-5p knockdown or EphA2 overexpression gave rise to reverse biological phenotypes. Furthermore, dual luciferase reporter assay verified that miR-10b-5p was a target of EphA2, and the rescue experiment implied that transfection of pCMV-EphA2 or Si-EphA2 could reverse EphA2 expression and cell biological functions caused by miR-10b-5p overexpression or knockdown. Conclusions. miR-10b-5p reduced HCC cell proliferation but accelerate apoptosis by regulating EphA2, suggesting it has the potential to be a clinical target for HCC.

2020 ◽  
Vol 19 ◽  
pp. 153303382098010
Author(s):  
Chuan Cheng ◽  
Huixia Li ◽  
Jiujian Zheng ◽  
Jie Xu ◽  
Peng Gao ◽  
...  

Objective: LncRNAs are non-coding RNAs exerting vital roles in the occurrence and development of various cancer types. This study tended to describe the expression pattern of FENDRR in colorectal cancer (CRC), and further investigate the role of FENDRR in CRC cell biological behaviors. Methods: Gene expression profile of colon cancer was accessed from the TCGA database, and then processed for differential analysis for identification of differentially expressed lncRNAs and miRNAs. Some in vitro experiments like qRT-PCR, MTT, colony formation assay, wound healing assay and Transwell assay were performed to assess the effect of FENDRR on cell biological behaviors. Dual-luciferase reporter assay was conducted to further validate the targeting relationship between FENDRR and miR-424-5p, and rescue experiments were carried out for determining the mechanism of FENDRR/miR-424-5p underlying the proliferation, migration and invasion of CRC cells. Results: Bioinformatics analysis suggested that FENDRR was significantly down-regulated in CRC tissue, and low FENDRR was intimately correlated to poor prognosis. FENDRR overexpression could greatly inhibit cell proliferation, migration and invasion. Besides, there was a negative correlation between FENDRR and miR-424-5p. Dual-luciferase reporter assay indicated that miR-424-5p was a direct target of FENDRR. Rescue experiments discovered that FENDRR exerted its role in cell proliferation, migration and invasion in CRC via targeting miR-424-5p. Conclusion: FENDRR is poorly expressed in CRC tissue and cells, and low FENDRR is responsible for the inhibition of cell proliferation, migration and invasion of CRC by means of targeting miR-424-5p.


2020 ◽  
Author(s):  
Pengcheng Li ◽  
Junhui Xing ◽  
Jianwu Jiang ◽  
Xinyu Tian ◽  
Xuemeng Liu ◽  
...  

Abstract Background: Nasopharyngeal carcinoma (NPC) is the most common malignant tumor in the head and neck that is characterized by high local malignant invasion and distant metastasis. miR-18a-5p reportedly plays an important role in tumorigenesis and development. However, little is known about the mechanism underlying miR-18a-5p’s role in NPC.Methods:Quantitative real-time PCR was used to detect the expression of miR-18a-5p in NPC tissues and cell lines. MTT assay and plate clone formation assay were used to detect the effect of miR-18a-5p on NPC cell proliferation. Woundhealing assays and Transwell assays were used to detect the effect of miR-18a-5p on NPC cell invasion and migration. The expressions of epithelialmesenchymal transition (EMT)-related proteins N-cadherin, Vimentin, and E-cadherin were detected by Westernblot. Bioinformatics and dual-luciferase reporter assay were used to detect the targeting interaction between miR-18a-5p and SMAD2. Xenotransplantation and metastasis model were used to detect the effect of miR-18a-5p on NPC growth and metastasis in vivo.Results:miR-18a-5p was highly expressed in NPC tissues and cell lines. Overexpression of miR-18a-5p promotedNPC cell proliferation, invasion, migration, and EMT process, whereas inhibition of miR-18a-5p expression led to the oppositeresults. Results of dual-luciferase reporter assay showed that SMAD2 was the target gene of miR-18a-5p, and SMAD2 could reverse the effect of miR-18a-5p on NPC cell line. Xenotransplantation and metastasis model experiments in nude mice showed that miR-18a-5p promotesNPC growth and metastasis in vivo.Conclusions:Targeting SMAD2 downregulated miR-18a-5p expression, thereby promoting NPC cell proliferation, invasion, migration, and EMT.


2020 ◽  
Author(s):  
WuBin Weng ◽  
ChangMing Liu ◽  
GuoMin Li ◽  
QiongFang Ruan ◽  
HuiZhang Li ◽  
...  

Abstract Background: Long noncoding RNAs (lncRNAs) are one of the major causes of tumorigenesis. However, the roles and mechan­­isms of lncRNA SNHG16 in prostate cancer (PCa) remain unknown. The purpose of this study was to elucidate the mech­­anisms of lncRNA SNHG16 in the proliferation and metastasis of human PCa cells.Material and Methods: First, the quantitative polymerase chain reaction (qPCR) was used to measure SNHG16 expression in PCa tissues and adjacent normal tissues (n=80). Down-regulate and over-express SNHG16 in human PCa DU-145 cell. Then cell proliferation was detected by CCK8 assay, cell apoptosis was analyzed by flow cytometry, cell migration were determined by wound healing, and cell invasion was examined by transwell. Western blot assays were used to examine the expression of the TGFBR2, c-MYC, E2F4, SMAD2, p-SMAD2, SMAD3, and p-SMAD3. Second, the targeting relationship between SNHG16 and hsa-miR-373-3p was verified by dual-luciferase reporter assay and rescue experiments. Third, the targeting relationship between hsa-miR-373-3p and TGFBR2 was verified by dual-luciferase reporter assay and rescue experiments. Results: The expression of SNHG16 was significant increase in PCa tissues (Z=-8.405, P<0.001), and with significant correlation with patient's age (<60 and ≥60 years old, P=0.007). Silencing SNHG16 inhibited DU-145 cell proliferation, migration, and invasion, while induced cell apoptosis significantly (P<0.01, respectively). Overexpressing SNHG16 promoted cell proliferation, migration and invasion, and reduced cell apoptosis rate (P<0.05, respectively). SNHG16 overexpression observably increased TGFBR2, c-MYC, E2F4, p-SMAD2, and p-SMAD3 expression (P<0.001, respectively), but SNHG16 inhibition was opposite. However, SNHG16 did not regulate SMAD2 and SMAD3 expression. Next, hsa-miR-373-3p was found down-regulated in PCa tissues (Z=-8.344, P<0.001), and the down-regulation of hsa-miR-373-3p were closely linked to Gleason score (Gleason score: <7 and >7, P = 0.024). Hsa-miR-373-3p expression of hsa-miR-373-3p was negatively correlated with SNHG16 (r=-0.544, P<0.001). The result of dual-luciferase reporter assay and qPCR test revealed that hsa-miR-373-3p was a target of SNHG16. Hsa-mir-373-3p inhibitor could rescue sh-SNHG16-inhibited cell proliferation, migration and invasion by promoting TGFBR2, C-MYC, E2F4, P-Smad2, and P-smad3 expression. Finally, we found that TGFBR2 may be the target gene of hsa-mir-373-3p through TargetScan and starbase. Further research found that TGFBR2 was markedly up-regulated in PCa tissues (Z=-5.945, P<0.001), and the expression of TGFBR2 was negatively correlated with hsa-miR-373-3p (r=-0.627, P<0.001). Dual-luciferase reporter assay and qPCR test showed that TGFBR2 was a target of hsa-miR-373-3p. TGFBR2 knockdown could inhibit hsa-mir-373-3p inhibitor-induced cell proliferation, migration and invasion, and reversed the effect of hsa-mir-373-3p inhibitor on cell apoptosis. Based on the data, sh-TGFBR2 partially disabled hsa-mir-373-3p inhibitor effect. Conclusion: LncRNA SNHG16 might act as a ceRNA to regulate the proliferation and migration of DU-145 cells by modulating the hsa-miR-373-3p/TGFBR2/SMAD axis.


2016 ◽  
Vol 38 (6) ◽  
pp. 2500-2508 ◽  
Author(s):  
Yang Liu ◽  
Yi Chai ◽  
Jian Zhang ◽  
Junwei Tang

Backgroud/Aims: Previous studies have shown that miR-501 is involved in the development of hepatocellular carcinoma (HCC) by promoting cell proliferation through CYLD. From the published MirSNP database that enrolls all single nucleotide polymorphisms(SNPs) of microRNA (miRNA), we found an interesting SNP (rs112489955, G>A) located in the mature region of miR-501. Methods: We performed a case-control study focusing on the predicted SNP located in miRNA-501 to investigate the further relationship of the SNPs with miRNAs among HCC patients. Genotyping, real time PCR assay, cell transfection and the dual luciferase reporter assay were used in our study. Results: Bioinformatic analysis indicated that this SNP would inhibit the binding of miR-501 to CYLD. In a case-control study, subjects with the variant genotypes (AG, GG) showed a significantly increased risk of HCC relative to AA carriers. A significant association of miR-501 variant genotypes with enhanced tumor growth was also observed. Further functional analyses indicated that patients with the AA genotype might attenuate the level of CYLD compared to that regulated by miR-501 with the GG genotype. A dual luciferase reporter assay also confirmed that miR-501 with the A allele had reduced binding to CYLD. We further confirmed a suppression of cell proliferation and promotion of apoptosis in SMMC-7721 and Hep3B cell lines treated with the AA genotype. Conclusions: We identified a novel SNP located in miR-501 acting as an important factor of the HCC susceptibility by modulating miR-501 and CYLD levels.


2018 ◽  
Vol 46 (2) ◽  
pp. 442-450 ◽  
Author(s):  
Zhenxin Zheng ◽  
Feng Bao ◽  
Xuhong Chen ◽  
Hongbin Huang ◽  
Xiangfeng Zhang

Background/Aims: Growing evidence has shown that miR-330-3p is closely related to the biological behavior of cancer, including proliferation, metastasis, and prognosis. However, there have been no reports on miR-330-3p expression and function in osteosarcoma. Methods: Expression of miR-330-3p in osteosarcoma tissues and cell lines was examined by quantitative PCR. Effects of miR-330-3p on osteosarcoma cell proliferation were investigated in vitro with the Cell Counting Kit-8 colorimetric assay. Targets of miR-330-3p were identified by dual-luciferase reporter assay. Results: The results showed that expression of miR-330 decreased in osteosarcoma tissues and cell lines. Prognosis of patients with high miR-330-3p expression was much better than that of those with low expression (P=0.001), and multivariate analysis suggested that miR-330-3p is an independent prognostic factor for osteosarcoma. In addition, miR-330-3p overexpression significantly inhibited the growth of MG-63 and U2OS osteosarcoma cells. Dual-luciferase reporter assay demonstrated that Bmi-1 was a direct target gene of miR-330-3p, and in a recovery experiment, miR-330-3p suppressed osteosarcoma cell proliferation by directly targeting Bmi-1. Conclusion: Our results suggest that miR-330-3p acts as a tumor suppressor by regulating Bmi-1 expression in osteosarcoma. Thus, miR-330-3p may represent a novel therapeutic target for the treatment of osteosarcoma.


2019 ◽  
Vol 166 (5) ◽  
pp. 433-440 ◽  
Author(s):  
Wei Yin ◽  
Lei Shi ◽  
Yanjiao Mao

Abstract Nasopharyngeal carcinoma (NPC) is an important type of head and neck malignant cancer with geographical distribution. MicroRNA-449b-5p (miR-449b-5p) is related to the development of various cancers, while its function in NPC remains unknown. The present study aimed to investigate the role and target gene of miR-449b-5p in NPC. Expressions of miR-449b-5p in NPC cell lines and clinical tissues were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was determined by MTT and colony formation assays. Migration and invasion abilities after different treatment were evaluated by wound healing and Transwell assays, respectively. Dual-luciferase reporter assay was performed to explore the relationship between miR-449b-5p and tumour protein D52 (TPD52). TPD52 expression was determined by qRT-PCR and western blot assay. miR-449b-5p was significantly downregulated in NPC cell lines and clinical tissues than the matched control. Overexpression of miR-449b-5p inhibited proliferation, migration and invasion of NPC cells. Dual-luciferase reporter assay indicated that miR-449b-5p directly targeted TPD52. Furthermore, shRNA-mediated downregulation of TPD52 rectified the promotion of cell migration and invasion by miR-449b-5p inhibition. In conclusion, the present study suggests that miR-449b-5p, as a novel tumour-suppressive miRNA against NPC, inhibits proliferation, migration and invasion of NPC cells via inhibiting TPD52 expression.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tian-Jun Chen ◽  
Qi Zheng ◽  
Fei Gao ◽  
Tian Yang ◽  
Hui Ren ◽  
...  

Abstract Background MicroRNAs (miRNAs) are involved in the oncogenesis, development and transformation of lung squamous cell carcinoma (LUSC). miR-665 is clinically significant and acts as a pivotal function in some cancers. Nevertheless, the effects and the potential mechanisms of miR-665 in human LUSC are still unknown. Methods To analyse the clinical significant of miR-665 in human LUSC, quantitative real-time PCR (qRT-PCR) was use to measure miR-665 expression in LUSC specimen tissues and cell lines. Tripartite motif 8 (TRIM8) was verified a target of miR-665 by performing bioinformatic prediction and luciferase reporter assay. The expression levels of TRIM8 were examined through qRT-PCR and Western blotting in LUSC specimen tissues. CCK8 assay was fulfilled for analyzing the function in LUSC cell proliferation. Flow cytometry was used to detect cell and apoptosis. TRIM8 silencing and overexpression further verified the biological effects as those caused by miR-665. Results Here we reported that miR-665 expression was upregulated in LUSC specimen tissues and cell lines. High miR-665 levels were related to differentiation, tumor size and TNM stage. miR-665 mimics facilitated LUSC cell growth and cell cycle G1-S transition and repressed apoptosis. miR-665 inhibitor suppressed cell proliferation and G1-S transition and promoted apoptosis. miR-665 expression was negatively correlated with TRIM8 mRNA expression in LUSC. Luciferase reporter assay confirmed that TRIM8 was a direct target gene of miR-665. miR-665 mimics downregulated the TRIM8 levels, and miR-665 inhibitor upregulated the TRIM8 levels in LUSC cells. Particularly, silencing TRIM8 led to the similar effects of miR-665 mimics in LUSC cells. Overexpression of TRIM8 inhibited LUSC cell proliferation in vitro and in vivo. Furthermore, miR-665 promoted LUSC cell proliferation through facilitating the Wnt5a/β-catenin signaling pathway and restrained apoptosis via inhibiting Caspase-3 signaling pathway, whereas TRIM8 suppressed cell growth by repressing the Wnt5a/β-catenin signaling pathway and induced apoptosis through activating Caspase-3 signaling pathway. Conclusions The current study demonstrates that miR-665 facilitates LUSC cell proliferation and cell cycle transition by regulation of the Wnt5a/β-Catenin signaling pathway and represses cell apoptosis via modulation of Caspase-3 signaling pathway by directly targeting TRIM8. These findings suggest that miR-665 might be a potential new target for LUSC therapy.


2020 ◽  
Author(s):  
Shengming Fan ◽  
Pei Chen ◽  
Shugang Li

Abstract Background: The study aimed to investigate the regulatory relationship between miR-145-5p and ABRACL, and tried to clarify the mechanisms underlying the proliferation, migration and invasion of esophageal cancer (EC) cells.Methods: Gene expression data related to EC were accessed from TCGA database and the “edgeR” package was used to screen the differentially expressed miRNA (DEmiRNAs) and genes (DEGs). TargetScan, miRDB and miRTarBase databases were used to predict potential targets for the target miRNA miR-145-5p. qRT-PCR and Western blot were performed to assess the expression of miR-145-5p and ABRACL in EC cells. Dual-luciferase reporter assay was performed for verification of the targeting relationship between miR-145-5p and ABRACL. Functional experiments including colony formation assay, Transwell migration and invasion assays were used to detect the proliferation, migration and invasion abilities of EC cells. Results: The expression of miR-145-5p was significantly decreased in EC, while ABRACL was remarkably increased. In addition, there was a negative correlation identified between miR-145-5p and ABRACL expression levels. Overexpressing miR-145-5p was able to suppress cell proliferation, migration and invasion, whereas silencing miR-145-5p posed an opposite effect. In the meantime, ABRACL was identified as a direct target of miR-145-5p by dual-luciferase reporter assay. Furthermore, miR-145-5p could inhibit the expression of ABRACL, in turn inhibiting the proliferation, migration and invasion of EC cells. Conclusion: miR-145-5p functions on the proliferation, migration and invasion of EC cells via targeting ABRACL, and it may be a novel therapeutic target for EC treatment.


2020 ◽  
Author(s):  
Pengcheng Li ◽  
Junhui Xing ◽  
Jianwu Jiang ◽  
Xinyu Tian ◽  
Xuemeng Liu ◽  
...  

Abstract Background Nasopharyngeal carcinoma (NPC) is the most common malignant tumor in the head and neck that is characterized by high local malignant invasion and distant metastasis. miR-18a-5p reportedly plays an important role in tumorigenesis and development. However, little is known about the mechanism underlying miR-18a-5p’s role in NPC. Methods Quantitative real-time PCR was used to detect the expression of miR-18a-5p in NPC tissues and cell lines. MTT assay and plate clone formation assay were used to detect the effect of miR-18a-5p on NPC cell proliferation. Wound healing assays and Transwell assays were used to detect the effect of miR-18a-5p on NPC cell invasion and migration. The expressions of epithelial mesenchymal transition (EMT)-related proteins N-cadherin, Vimentin, and E-cadherin were detected by Western blot. Bioinformatics and dual-luciferase reporter assay were used to detect the targeting interaction between miR-18a-5p and SMAD2. Xenotransplantation and metastasis model were used to detect the effect of miR-18a-5p on NPC growth and metastasis in vivo. Results miR-18a-5p was highly expressed in NPC tissues and cell lines. Overexpression of miR-18a-5p promoted NPC cell proliferation, invasion, migration, and EMT process, whereas inhibition of miR-18a-5p expression led to the opposite results. Results of dual-luciferase reporter assay showed that SMAD2 was the target gene of miR-18a-5p, and SMAD2 could reverse the effect of miR-18a-5p on NPC cell line. Xenotransplantation and metastasis model experiments in nude mice showed that miR-18a-5p promotes NPC growth and metastasis in vivo. Conclusions Targeting SMAD2 downregulated miR-18a-5p expression, thereby promoting NPC cell proliferation, invasion, migration, and EMT.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shengming Fan ◽  
Pei Chen ◽  
Shugang Li

Objective. The study is aimed at investigating the regulatory relationship between miR-145-5p and ABRACL, and has tried at clarifying the mechanisms underlying the proliferation, migration, and invasion of esophageal carcinoma (EC) cells. Methods. Gene expression data related to EC were accessed from TCGA database, and the “edgeR” package was used to screen differentially expressed genes. TargetScan, miRDB, and miRTarBase databases were used to predict potential targets for the target miRNA miR-145-5p. qRT-PCR and Western blot were performed to assess the expression of miR-145-5p and ABRACL in EC cells. Dual-luciferase reporter assay was performed to validate the targeting relationship between miR-145-5p and ABRACL. Functional experiments including CCK-8 assay, Transwell migration, and invasion assays were used to detect the proliferation, migration, and invasion of EC cells. Results. The expression of miR-145-5p was significantly decreased in EC, while ABRACL was remarkably increased. In addition, there was a negative correlation identified between miR-145-5p and ABRACL mRNA. Overexpressing miR-145-5p was able to suppress cell proliferation, migration, and invasion, whereas silencing miR-145-5p posed an opposite effect. In the meantime, ABRACL was identified as a direct target of miR-145-5p by dual-luciferase reporter assay. Furthermore, miR-145-5p could inhibit the expression of ABRACL, in turn inhibiting the proliferation, migration, and invasion of EC cells. Conclusion. miR-145-5p functions on the proliferation, migration, and invasion of EC cells via targeting ABRACL, and it may be a novel therapeutic target in EC treatment.


Sign in / Sign up

Export Citation Format

Share Document