scholarly journals Football Players’ Shooting Posture Norm Based on Deep Learning in Sports Event Video

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Guangliang Huang ◽  
Zhuangxu Lan ◽  
Guo Huang

Football is one of the favorite sports of people nowadays. Shooting is the ultimate goal of all offensive tactics in football matches. This is the most basic way to score a goal and the only way to score a goal. The choice and use of shooting technical indicators can have a great impact on the final result of the game. Therefore, how to improve the shooting technique of football players and how to adjust the shooting posture of football players are important issues faced by coaches and athletes. In recent years, deep learning has been widely used in various fields such as image classification and recognition and language processing. How to apply deep learning optimization to shooting gesture recognition is a very promising research direction. This article aims to study the football player’s shooting posture specification based on deep learning in sports event videos. Based on the analysis of target motion detection algorithm, target motion tracking algorithm, target motion recognition algorithm, and football shooting posture classification, KTH and Weizmann data sets are used. As the experimental verification data set of this article, the shooting posture of football players in the sports event video is recognized, and the accuracy of the action recognition is finally calculated to standardize the football shooting posture. The experimental results show that the Weizmann data set has a higher accuracy rate than the KTH data set and is more suitable for shooting attitude specifications.

2016 ◽  
Vol 14 (1) ◽  
pp. 172988141769231 ◽  
Author(s):  
Yingfeng Cai ◽  
Youguo He ◽  
Hai Wang ◽  
Xiaoqiang Sun ◽  
Long Chen ◽  
...  

The emergence and development of deep learning theory in machine learning field provide new method for visual-based pedestrian recognition technology. To achieve better performance in this application, an improved weakly supervised hierarchical deep learning pedestrian recognition algorithm with two-dimensional deep belief networks is proposed. The improvements are made by taking into consideration the weaknesses of structure and training methods of existing classifiers. First, traditional one-dimensional deep belief network is expanded to two-dimensional that allows image matrix to be loaded directly to preserve more information of a sample space. Then, a determination regularization term with small weight is added to the traditional unsupervised training objective function. By this modification, original unsupervised training is transformed to weakly supervised training. Subsequently, that gives the extracted features discrimination ability. Multiple sets of comparative experiments show that the performance of the proposed algorithm is better than other deep learning algorithms in recognition rate and outperforms most of the existing state-of-the-art methods in non-occlusion pedestrian data set while performs fair in weakly and heavily occlusion data set.


2021 ◽  
Author(s):  
ming ji ◽  
Chuanxia Sun ◽  
Yinglei Hu

Abstract In order to solve the increasingly serious traffic congestion problem, an intelligent transportation system is widely used in dynamic traffic management, which effectively alleviates traffic congestion and improves road traffic efficiency. With the continuous development of traffic data acquisition technology, it is possible to obtain real-time traffic data in the road network in time. A large amount of traffic information provides a data guarantee for the analysis and prediction of road network traffic state. Based on the deep learning framework, this paper studies the vehicle recognition algorithm and road environment discrimination algorithm, which greatly improves the accuracy of highway vehicle recognition. Collect highway video surveillance images in different environments, establish a complete original database, build a deep learning model of environment discrimination, and train the classification model to realize real-time environment recognition of highway, as the basic condition of vehicle recognition and traffic event discrimination, and provide basic information for vehicle detection model selection. To improve the accuracy of road vehicle detection, the vehicle target labeling and sample preprocessing of different environment samples are carried out. On this basis, the vehicle recognition algorithm is studied, and the vehicle detection algorithm based on weather environment recognition and fast RCNN model is proposed. Then, the performance of the vehicle detection algorithm described in this paper is verified by comparing the detection accuracy differences between different environment dataset models and overall dataset models, different network structures and deep learning methods, and other methods.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
BinBin Zhang ◽  
Fumin Zhang ◽  
Xinghua Qu

Purpose Laser-based measurement techniques offer various advantages over conventional measurement techniques, such as no-destructive, no-contact, fast and long measuring distance. In cooperative laser ranging systems, it’s crucial to extract center coordinates of retroreflectors to accomplish automatic measurement. To solve this problem, this paper aims to propose a novel method. Design/methodology/approach We propose a method using Mask RCNN (Region Convolutional Neural Network), with ResNet101 (Residual Network 101) and FPN (Feature Pyramid Network) as the backbone, to localize retroreflectors, realizing automatic recognition in different backgrounds. Compared with two other deep learning algorithms, experiments show that the recognition rate of Mask RCNN is better especially for small-scale targets. Based on this, an ellipse detection algorithm is introduced to obtain the ellipses of retroreflectors from recognized target areas. The center coordinates of retroreflectors in the camera coordinate system are obtained by using a mathematics method. Findings To verify the accuracy of this method, an experiment was carried out: the distance between two retroreflectors with a known distance of 1,000.109 mm was measured, with 2.596 mm root-mean-squar error, meeting the requirements of the coarse location of retroreflectors. Research limitations/implications The research limitations/implications are as follows: (i) As the data set only has 200 pictures, although we have used some data augmentation methods such as rotating, mirroring and cropping, there is still room for improvement in the generalization ability of detection. (ii) The ellipse detection algorithm needs to work in relatively dark conditions, as the retroreflector is made of stainless steel, which easily reflects light. Originality/value The originality/value of the article lies in being able to obtain center coordinates of multiple retroreflectors automatically even in a cluttered background; being able to recognize retroreflectors with different sizes, especially for small targets; meeting the recognition requirement of multiple targets in a large field of view and obtaining 3 D centers of targets by monocular model-based vision.


Author(s):  
Yilin Yan ◽  
Jonathan Chen ◽  
Mei-Ling Shyu

Stance detection is an important research direction which attempts to automatically determine the attitude (positive, negative, or neutral) of the author of text (such as tweets), towards a target. Nowadays, a number of frameworks have been proposed using deep learning techniques that show promising results in application domains such as automatic speech recognition and computer vision, as well as natural language processing (NLP). This article shows a novel deep learning-based fast stance detection framework in bipolar affinities on Twitter. It is noted that millions of tweets regarding Clinton and Trump were produced per day on Twitter during the 2016 United States presidential election campaign, and thus it is used as a test use case because of its significant and unique counter-factual properties. In addition, stance detection can be utilized to imply the political tendency of the general public. Experimental results show that the proposed framework achieves high accuracy results when compared to several existing stance detection methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yanjia Tian ◽  
Xiang Feng

With the explosive development of big data, information data mining technology has also been developed rapidly, and complex networks have become a hot research direction in data mining. In real life, many complex systems will use network nodes for intelligent detection. When many community detection algorithms are used, many problems have arisen, so they have to face improvement. The new detection algorithm CS-Cluster proposed in this paper is derived by using the dissimilarity of node proximity. Of course, the new algorithm proposed in this article is based on the IGC-CSM algorithm. It has made certain improvements, and CS-Cluster has been implemented in the four algorithms of IGC-CSM, SA-Cluster, W-Cluster, and S-Cluster. The result of comparing the density value on the entropy value of the Political Blogs data set, the DBLP data set, the Political Blogs data set, and the entropy value of the DBLP data set is shown. Finally, it is concluded that the CS-Cluster algorithm is the best in terms of the effect and quality of clustering, and the degree of difference in the subgraph structure of clustering.


One of the issues that the human body faces is arrhythmia, a condition where the human heartbeat is either irregular, too slow or too fast. One of the ways to diagnose arrhythmia is by using ECG signals, the best diagnostic tool for detection of arrhythmia. This paper describes a deep learning approach to check whether signs of arrhythmia, in a given input signal, are present or not. A batch normalized CNN is used to classify the ECG signals based on the different types of arrhythmia. The model has achieved 96.39% training accuracy and 97% testing accuracy. The ECG signals are classified into five classes namely: Normal beats, Premature Ventricular Contraction (PVC) beats, Right Bundle Branch Block (RBBB) beats, Left Bundle Branch Block (LBBB) beats and Paced beats. A peak detection algorithm with six simple steps is designed to detect R-peaks from the ECG signals. A hardware device is built using Raspberry Pi to acquire ECG signals, which are then sent to the trained CNN for classification. The data-set for training is obtained from the MIT-BIH repository. Keras and Tensorflow libraries are used to design and develop the CNN and an application is designed using ’MEAN’ stack and ’Flask’ based servers.


2021 ◽  
Vol 11 (24) ◽  
pp. 12116
Author(s):  
Shanza Abbas ◽  
Muhammad Umair Khan ◽  
Scott Uk-Jin Lee ◽  
Asad Abbas

Natural language interfaces to databases (NLIDB) has been a research topic for a decade. Significant data collections are available in the form of databases. To utilize them for research purposes, a system that can translate a natural language query into a structured one can make a huge difference. Efforts toward such systems have been made with pipelining methods for more than a decade. Natural language processing techniques integrated with data science methods are researched as pipelining NLIDB systems. With significant advancements in machine learning and natural language processing, NLIDB with deep learning has emerged as a new research trend in this area. Deep learning has shown potential for rapid growth and improvement in text-to-SQL tasks. In deep learning NLIDB, closing the semantic gap in predicting users’ intended columns has arisen as one of the critical and fundamental problems in this research field. Contributions toward this issue have consisted of preprocessed feature inputs and encoding schema elements afore of and more impactful to the targeted model. Various significant work contributed towards this problem notwithstanding, this has been shown to be one of the critical issues for the task of developing NLIDB. Working towards closing the semantic gap between user intention and predicted columns, we present an approach for deep learning text-to-SQL tasks that includes previous columns’ occurrences scores as an additional input feature. Overall exact match accuracy can also be improved by emphasizing the improvement of columns’ prediction accuracy, which depends significantly on column prediction itself. For this purpose, we extract the query fragments from previous queries’ data and obtain the columns’ occurrences and co-occurrences scores. Column occurrences and co-occurrences scores are processed as input features for the encoder–decoder-based text to the SQL model. These scores contribute, as a factor, the probability of having already used columns and tables together in the query history. We experimented with our approach on the currently popular text-to-SQL dataset Spider. Spider is a complex data set containing multiple databases. This dataset includes query–question pairs along with schema information. We compared our exact match accuracy performance with a base model using their test and training data splits. It outperformed the base model’s accuracy, and accuracy was further boosted in experiments with the pretrained language model BERT.


Author(s):  
Shaila S. G. ◽  
Sunanda Rajkumari ◽  
Vadivel Ayyasamy

Deep learning is playing vital role with greater success in various applications, such as digital image processing, human-computer interaction, computer vision and natural language processing, robotics, biological applications, etc. Unlike traditional machine learning approaches, deep learning has effective ability of learning and makes better use of data set for feature extraction. Because of its repetitive learning ability, deep learning has become more popular in the present-day research works.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Molham Al-Maleh ◽  
Said Desouki

AbstractNatural language processing has witnessed remarkable progress with the advent of deep learning techniques. Text summarization, along other tasks like text translation and sentiment analysis, used deep neural network models to enhance results. The new methods of text summarization are subject to a sequence-to-sequence framework of encoder–decoder model, which is composed of neural networks trained jointly on both input and output. Deep neural networks take advantage of big datasets to improve their results. These networks are supported by the attention mechanism, which can deal with long texts more efficiently by identifying focus points in the text. They are also supported by the copy mechanism that allows the model to copy words from the source to the summary directly. In this research, we are re-implementing the basic summarization model that applies the sequence-to-sequence framework on the Arabic language, which has not witnessed the employment of this model in the text summarization before. Initially, we build an Arabic data set of summarized article headlines. This data set consists of approximately 300 thousand entries, each consisting of an article introduction and the headline corresponding to this introduction. We then apply baseline summarization models to the previous data set and compare the results using the ROUGE scale.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Yi Lv ◽  
Zhengbo Yin ◽  
Zhezhou Yu

In order to improve the accuracy of remote sensing image target detection, this paper proposes a remote sensing image target detection algorithm DFS based on deep learning. Firstly, dimension clustering module, loss function, and sliding window segmentation detection are designed. The data set used in the experiment comes from GoogleEarth, and there are 6 types of objects: airplanes, boats, warehouses, large ships, bridges, and ports. Training set, verification set, and test set contain 73490 images, 22722 images, and 2138 images, respectively. It is assumed that the number of detected positive samples and negative samples is A and B, respectively, and the number of undetected positive samples and negative samples is C and D, respectively. The experimental results show that the precision-recall curve of DFS for six types of targets shows that DFS has the best detection effect for bridges and the worst detection effect for boats. The main reason is that the size of the bridge is relatively large, and it is clearly distinguished from the background in the image, so the detection difficulty is low. However, the target of the boat is very small, and it is easy to be mixed with the background, so it is difficult to detect. The MAP of DFS is improved by 12.82%, the detection accuracy is improved by 13%, and the recall rate is slightly decreased by 1% compared with YOLOv2. According to the number of detection targets, the number of false positives (FPs) of DFS is much less than that of YOLOv2. The false positive rate is greatly reduced. In addition, the average IOU of DFS is 11.84% higher than that of YOLOv2. For small target detection efficiency and large remote sensing image detection, the DFS algorithm has obvious advantages.


Sign in / Sign up

Export Citation Format

Share Document