scholarly journals Deep Learning based Arrhythmia Classification with an ECG Acquisition System

One of the issues that the human body faces is arrhythmia, a condition where the human heartbeat is either irregular, too slow or too fast. One of the ways to diagnose arrhythmia is by using ECG signals, the best diagnostic tool for detection of arrhythmia. This paper describes a deep learning approach to check whether signs of arrhythmia, in a given input signal, are present or not. A batch normalized CNN is used to classify the ECG signals based on the different types of arrhythmia. The model has achieved 96.39% training accuracy and 97% testing accuracy. The ECG signals are classified into five classes namely: Normal beats, Premature Ventricular Contraction (PVC) beats, Right Bundle Branch Block (RBBB) beats, Left Bundle Branch Block (LBBB) beats and Paced beats. A peak detection algorithm with six simple steps is designed to detect R-peaks from the ECG signals. A hardware device is built using Raspberry Pi to acquire ECG signals, which are then sent to the trained CNN for classification. The data-set for training is obtained from the MIT-BIH repository. Keras and Tensorflow libraries are used to design and develop the CNN and an application is designed using ’MEAN’ stack and ’Flask’ based servers.

2016 ◽  
Vol 14 (1) ◽  
pp. 172988141769231 ◽  
Author(s):  
Yingfeng Cai ◽  
Youguo He ◽  
Hai Wang ◽  
Xiaoqiang Sun ◽  
Long Chen ◽  
...  

The emergence and development of deep learning theory in machine learning field provide new method for visual-based pedestrian recognition technology. To achieve better performance in this application, an improved weakly supervised hierarchical deep learning pedestrian recognition algorithm with two-dimensional deep belief networks is proposed. The improvements are made by taking into consideration the weaknesses of structure and training methods of existing classifiers. First, traditional one-dimensional deep belief network is expanded to two-dimensional that allows image matrix to be loaded directly to preserve more information of a sample space. Then, a determination regularization term with small weight is added to the traditional unsupervised training objective function. By this modification, original unsupervised training is transformed to weakly supervised training. Subsequently, that gives the extracted features discrimination ability. Multiple sets of comparative experiments show that the performance of the proposed algorithm is better than other deep learning algorithms in recognition rate and outperforms most of the existing state-of-the-art methods in non-occlusion pedestrian data set while performs fair in weakly and heavily occlusion data set.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
BinBin Zhang ◽  
Fumin Zhang ◽  
Xinghua Qu

Purpose Laser-based measurement techniques offer various advantages over conventional measurement techniques, such as no-destructive, no-contact, fast and long measuring distance. In cooperative laser ranging systems, it’s crucial to extract center coordinates of retroreflectors to accomplish automatic measurement. To solve this problem, this paper aims to propose a novel method. Design/methodology/approach We propose a method using Mask RCNN (Region Convolutional Neural Network), with ResNet101 (Residual Network 101) and FPN (Feature Pyramid Network) as the backbone, to localize retroreflectors, realizing automatic recognition in different backgrounds. Compared with two other deep learning algorithms, experiments show that the recognition rate of Mask RCNN is better especially for small-scale targets. Based on this, an ellipse detection algorithm is introduced to obtain the ellipses of retroreflectors from recognized target areas. The center coordinates of retroreflectors in the camera coordinate system are obtained by using a mathematics method. Findings To verify the accuracy of this method, an experiment was carried out: the distance between two retroreflectors with a known distance of 1,000.109 mm was measured, with 2.596 mm root-mean-squar error, meeting the requirements of the coarse location of retroreflectors. Research limitations/implications The research limitations/implications are as follows: (i) As the data set only has 200 pictures, although we have used some data augmentation methods such as rotating, mirroring and cropping, there is still room for improvement in the generalization ability of detection. (ii) The ellipse detection algorithm needs to work in relatively dark conditions, as the retroreflector is made of stainless steel, which easily reflects light. Originality/value The originality/value of the article lies in being able to obtain center coordinates of multiple retroreflectors automatically even in a cluttered background; being able to recognize retroreflectors with different sizes, especially for small targets; meeting the recognition requirement of multiple targets in a large field of view and obtaining 3 D centers of targets by monocular model-based vision.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3997 ◽  
Author(s):  
Tam Nguyen ◽  
Xiaoli Qin ◽  
Anh Dinh ◽  
Francis Bui

A novel R-peak detection algorithm suitable for wearable electrocardiogram (ECG) devices is proposed with four objectives: robustness to noise, low latency processing, low resource complexity, and automatic tuning of parameters. The approach is a two-pronged algorithm comprising (1) triangle template matching to accentuate the slope information of the R-peaks and (2) a single moving average filter to define a dynamic threshold for peak detection. The proposed algorithm was validated on eight ECG public databases. The obtained results not only presented good accuracy, but also low resource complexity, all of which show great potential for detection R-peaks in ECG signals collected from wearable devices.


2014 ◽  
Vol 14 (04) ◽  
pp. 1450055 ◽  
Author(s):  
IBTICEME SEDJELMACI ◽  
F. BEREKSI-REGUIG

In this paper, the analysis of the electrocardiogram (ECG) signal is carried out according a non-linear approach. This concerns the eventual fractal behavior of such signal and the correlation of such behavior with normal and pathological ECG signals. The analysis is carried out on different ECG signals taken from the MIT-BIH arrhythmia database. In fact these signals are those of six subjects with different ages and presenting both normal and abnormal arrhythmias situations. The abnormal situations are atrial premature beat (APB), premature ventricular contraction (PVC), right bundle branch block (RBBB) and left bundle branch block (LBBB). The fractal behavior of these signals is analyzed according to the determination of the multifractal spectrum and the fractal dimension variations and looking for eventually a fractal signature of each heart disease and age of the subject. The obtained results show a fractal signature according to the age and the pathologies for the studied cases. However further investigations are required on larger databases to confirm such results.


2020 ◽  
Author(s):  
Mohammed Maaz ◽  
Sabah Mohammed

<p>The advancement of Artificial Intelligence & Deep Learning has catalyzed the field of technology. The progression in these fields is exponentially increasing, and the discoveries which were once just an imagination are now changed into reality. The evolution of cars each year has made a lot of difference in people travelling from one place to another. One such reform involving Artificial Intelligence & Deep Learning is the birth of a self-driving car. The future is here where one can reach their destination hassle-free safely without the fear of accidents. This paper introduces a practical model of the self-driving robotics car, which can travel from one position to another on different types of tracks. A Pi-camera module is attached with the help of Raspberry Pi, which sends series of image frames to the Convolutional neural network, which then foretells the car to move in a specific direction, i.e. right, left, forward and reverse direction. The outcome is the robotics car, which travels in the desired direction without any individual effort.<br></p>


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Guangliang Huang ◽  
Zhuangxu Lan ◽  
Guo Huang

Football is one of the favorite sports of people nowadays. Shooting is the ultimate goal of all offensive tactics in football matches. This is the most basic way to score a goal and the only way to score a goal. The choice and use of shooting technical indicators can have a great impact on the final result of the game. Therefore, how to improve the shooting technique of football players and how to adjust the shooting posture of football players are important issues faced by coaches and athletes. In recent years, deep learning has been widely used in various fields such as image classification and recognition and language processing. How to apply deep learning optimization to shooting gesture recognition is a very promising research direction. This article aims to study the football player’s shooting posture specification based on deep learning in sports event videos. Based on the analysis of target motion detection algorithm, target motion tracking algorithm, target motion recognition algorithm, and football shooting posture classification, KTH and Weizmann data sets are used. As the experimental verification data set of this article, the shooting posture of football players in the sports event video is recognized, and the accuracy of the action recognition is finally calculated to standardize the football shooting posture. The experimental results show that the Weizmann data set has a higher accuracy rate than the KTH data set and is more suitable for shooting attitude specifications.


2020 ◽  
Vol 2 (1) ◽  
pp. 84
Author(s):  
Won Hee Hwang ◽  
Chan Hee Jeong ◽  
Dong Hyun Hwang ◽  
Young Chang Jo

Early detection of arrhythmias is very important. Recently, wearable devices are being used to monitor the patient’s heartbeat to detect an arrhythmia. However, there are not satisfactory algorithms for real-time monitoring of arrhythmias in a wearable device. In this work, a novel fast and simple arrhythmia detection algorithm based on YOLO is proposed. The algorithm can detect each heartbeat on long-duration electrocardiogram (ECG) signals without R-peak detection and can classify an arrhythmia simultaneously. The model replaces the 2D Convolutional Neural networks (CNN) with a 1D CNN and the bounding box with a bounding window to utilize raw ECG signals. Results demonstrate that the proposed algorithm has high performance in speed and mean average precisionin detecting an arrhythmia. Furthermore, the bounding window can predict different window lengths on different types of arrhythmia. Therefore, the model can choose an optimal heartbeat window length for arrhythmia classification. Since the proposed model is a compact 1D CNN model based on YOLO, it can be used in a wearable device and embedded system.


2020 ◽  
Vol 12 (10) ◽  
pp. 1685 ◽  
Author(s):  
Amin Ullah ◽  
Syed Muhammad Anwar ◽  
Muhammad Bilal ◽  
Raja Majid Mehmood

The electrocardiogram (ECG) is one of the most extensively employed signals used in the diagnosis and prediction of cardiovascular diseases (CVDs). The ECG signals can capture the heart’s rhythmic irregularities, commonly known as arrhythmias. A careful study of ECG signals is crucial for precise diagnoses of patients’ acute and chronic heart conditions. In this study, we propose a two-dimensional (2-D) convolutional neural network (CNN) model for the classification of ECG signals into eight classes; namely, normal beat, premature ventricular contraction beat, paced beat, right bundle branch block beat, left bundle branch block beat, atrial premature contraction beat, ventricular flutter wave beat, and ventricular escape beat. The one-dimensional ECG time series signals are transformed into 2-D spectrograms through short-time Fourier transform. The 2-D CNN model consisting of four convolutional layers and four pooling layers is designed for extracting robust features from the input spectrograms. Our proposed methodology is evaluated on a publicly available MIT-BIH arrhythmia dataset. We achieved a state-of-the-art average classification accuracy of 99.11%, which is better than those of recently reported results in classifying similar types of arrhythmias. The performance is significant in other indices as well, including sensitivity and specificity, which indicates the success of the proposed method.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Yi Lv ◽  
Zhengbo Yin ◽  
Zhezhou Yu

In order to improve the accuracy of remote sensing image target detection, this paper proposes a remote sensing image target detection algorithm DFS based on deep learning. Firstly, dimension clustering module, loss function, and sliding window segmentation detection are designed. The data set used in the experiment comes from GoogleEarth, and there are 6 types of objects: airplanes, boats, warehouses, large ships, bridges, and ports. Training set, verification set, and test set contain 73490 images, 22722 images, and 2138 images, respectively. It is assumed that the number of detected positive samples and negative samples is A and B, respectively, and the number of undetected positive samples and negative samples is C and D, respectively. The experimental results show that the precision-recall curve of DFS for six types of targets shows that DFS has the best detection effect for bridges and the worst detection effect for boats. The main reason is that the size of the bridge is relatively large, and it is clearly distinguished from the background in the image, so the detection difficulty is low. However, the target of the boat is very small, and it is easy to be mixed with the background, so it is difficult to detect. The MAP of DFS is improved by 12.82%, the detection accuracy is improved by 13%, and the recall rate is slightly decreased by 1% compared with YOLOv2. According to the number of detection targets, the number of false positives (FPs) of DFS is much less than that of YOLOv2. The false positive rate is greatly reduced. In addition, the average IOU of DFS is 11.84% higher than that of YOLOv2. For small target detection efficiency and large remote sensing image detection, the DFS algorithm has obvious advantages.


2019 ◽  
Author(s):  
Jacob M. Graving ◽  
Daniel Chae ◽  
Hemal Naik ◽  
Liang Li ◽  
Benjamin Koger ◽  
...  

AbstractQuantitative behavioral measurements are important for answering questions across scientific disciplines—from neuroscience to ecology. State-of-the-art deep-learning methods offer major advances in data quality and detail by allowing researchers to automatically estimate locations of an animal’s body parts directly from images or videos. However, currently-available animal pose estimation methods have limitations in speed and robustness. Here we introduce a new easy-to-use software toolkit,DeepPoseKit, that addresses these problems using an eZcient multi-scale deep-learning model, calledStacked DenseNet, and a fast GPU-based peak-detection algorithm for estimating keypoint locations with subpixel precision. These advances improve processing speed >2× with no loss in accuracy compared to currently-available methods. We demonstrate the versatility of our methods with multiple challenging animal pose estimation tasks in laboratory and field settings—including groups of interacting individuals. Our work reduces barriers to using advanced tools for measuring behavior and has broad applicability across the behavioral sciences.


Sign in / Sign up

Export Citation Format

Share Document