scholarly journals Quantification of the Spectral Variability of Ore-Bearing Granodiorite under Supervised and Semisupervised Conditions: An Upscaling Approach

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yaron Ogen ◽  
Michael Denk ◽  
Cornelia Glaesser ◽  
Holger Eichstaedt ◽  
Rene Kahnt ◽  
...  

Reflectance spectroscopy is a nondestructive, rapid, and easy-to-use technique which can be used to assess the composition of rocks qualitatively or quantitatively. Although it is a powerful tool, it has its limitations especially when it comes to measurements of rocks with a phaneritic texture. The external variability is reflected only in spectroscopy and not in the chemical-mineralogical measurements that are performed on crushed rock in certified laboratories. Hence, the spectral variability of the surface of an uncrushed rock will, in most cases, be higher than the internal chemical-mineralogical variability, which may impair statistical models built on field measurements. For this reason, studying ore-bearing rocks and evaluating their spectral variability in different scales is an important procedure to better understand the factors that may influence the qualitative and quantitative analysis of the rocks. The objectives are to quantify the spectral variability of three types of altered granodiorite using well-established statistical methods with an upscaling approach. With this approach, the samples were measured in the laboratory under supervised ambient conditions and in the field under semisupervised conditions. This study further aims to conclude which statistical method provides the best practical and accurate classification for use in future studies. Our results showed that all statistical methods enable the separation of the rock types, although two types of rocks have exhibited almost identical spectra. Furthermore, the statistical methods that supplied the most significant results for classification purposes were principal component analysis combined with k-nearest neighbor with a classification accuracy for laboratory and field measurements of 68.1% and 100%, respectively.

Author(s):  
Zhu Siyu ◽  
He Chongnan ◽  
Song Mingjuan ◽  
Li Linna

In response to the frequent counterfeiting of Wuchang rice in the market, an effective method to identify brand rice is proposed. Taking the near-infrared spectroscopy data of a total of 373 grains of rice from the four origins (Wuchang, Shangzhi, Yanshou, and Fangzheng) as the observations, kernel principal component analysis(KPCA) was employed to reduce the dimensionality, and Fisher discriminant analysis(FDA) and k-nearest neighbor algorithm (KNN) were used to identify brand rice respectively. The effects of the two recognition methods are very good, and that of KNN is relatively better. Howerver the shortcomings of KNN are obvious. For instance, it has only one test dimension and its test of samples is not delicate enough. In order to further improve the recognition accuracy, fuzzy k-nearest neighbor set is defined and fuzzy probability theory is employed to get a new recognition method –Two-Parameter KNN discrimination method. Compared with KNN algorithm, this method increases the examination dimension. It not only examines the proportion of the number of samples in each pattern class in the k-nearest neighbor set, but also examines the degree of similarity between the center of each pattern class and the sample to be identified. Therefore, the recognition process is more delicate and the recognition accuracy is higher. In the identification of brand rice, the discriminant accuracy of Two-Parameter KNN algorithm is significantly higher than that of FDA and that of KNN algorithm.


2020 ◽  
Vol 8 (5) ◽  
pp. 2522-2527

In this paper, we design method for recognition of fingerprint and IRIS using feature level fusion and decision level fusion in Children multimodal biometric system. Initially, Histogram of Gradients (HOG), Gabour and Maximum filter response are extracted from both the domains of fingerprint and IRIS and considered for identification accuracy. The combination of feature vector of all the possible features is recommended by biometrics traits of fusion. For fusion vector the Principal Component Analysis (PCA) is used to select features. The reduced features are fed into fusion classifier of K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Navie Bayes(NB). For children multimodal biometric system the suitable combination of features and fusion classifiers is identified. The experimentation conducted on children’s fingerprint and IRIS database and results reveal that fusion combination outperforms individual. In addition the proposed model advances the unimodal biometrics system.


2020 ◽  
Vol 2 (2) ◽  
pp. 29-38
Author(s):  
Abdur Rohman Harits Martawireja ◽  
Hilman Mujahid Purnama ◽  
Atika Nur Rahmawati

Pengenalan wajah manusia (face recognition) merupakan salah satu bidang penelitian yang penting dan belakangan ini banyak aplikasi yang menerapkannya, baik di bidang komersil ataupun di bidang penegakan hukum. Pengenalan wajah merupakan sebuah sistem yang berfungsikan untuk mengidentifikasi berdasarkan ciri-ciri dari wajah seseorang berbasis biometrik yang memiliki keakuratan tinggi. Pengenalan wajah dapat diterapkan pada sistem keamanan. Banyak metode yang dapat digunakan dalam aplikasi pengenalan wajah untuk keamanan sistem, namun pada artikel ini akan membahas tentang dua metode yaitu Two Dimensial Principal Component Analysis dan Kernel Fisher Discriminant Analysis dengan metode klasifikasi menggunakan K-Nearest Neigbor. Kedua metode ini diuji menggunakan metode cross validation. Hasil dari penelitian terdahulu terbukti bahwa sistem pengenalan wajah metode Two Dimensial Principal Component Analysis dengan 5-folds cross validation menghasilkan akurasi sebesar 88,73%, sedangkan dengan 2-folds validation akurasi yang dihasilkan sebesar 89,25%. Dan pengujian metode Kernel Fisher Discriminant dengan 2-folds cross validation menghasilkan akurasi rata rata sebesar 83,10%.


2018 ◽  
Vol 7 (3.33) ◽  
pp. 128
Author(s):  
Ki Young Lee ◽  
Kyu Ho Kim ◽  
Jeong Jin Kang ◽  
Sung Jai Choi ◽  
Yong Soon Im ◽  
...  

Real-time facial expression recognition and analysis technology is recently drawing attention in areas of computer vision, computer graphics, and HCI. Recognition of user’s emotion on the basis of video and voice is drawing particular interest. The technology may help managers of households or hospitals. In the present study, video and voice were converted into digital data through MATLAB by using PCA(Principal Component Analysis), LDA(Linear Discriminant Analysis), KNN(K Nearest Neighbor) algorithms to analyze emotions through machine learning. The manager of the psychological analysis counseling system may understand a user’s emotion in an smart phone environment. This system of the present study may help the manager to have a smooth conversation or develop a smooth relationship with a user on the basis of the provided psychological analysis results. 


Foods ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 38 ◽  
Author(s):  
Xiaohong Wu ◽  
Jin Zhu ◽  
Bin Wu ◽  
Chao Zhao ◽  
Jun Sun ◽  
...  

The detection of liquor quality is an important process in the liquor industry, and the quality of Chinese liquors is partly determined by the aromas of the liquors. The electronic nose (e-nose) refers to an artificial olfactory technology. The e-nose system can quickly detect different types of Chinese liquors according to their aromas. In this study, an e-nose system was designed to identify six types of Chinese liquors, and a novel feature extraction algorithm, called fuzzy discriminant principal component analysis (FDPCA), was developed for feature extraction from e-nose signals by combining discriminant principal component analysis (DPCA) and fuzzy set theory. In addition, principal component analysis (PCA), DPCA, K-nearest neighbor (KNN) classifier, leave-one-out (LOO) strategy and k-fold cross-validation (k = 5, 10, 20, 25) were employed in the e-nose system. The maximum classification accuracy of feature extraction for Chinese liquors was 98.378% using FDPCA, showing this algorithm to be extremely effective. The experimental results indicate that an e-nose system coupled with FDPCA is a feasible method for classifying Chinese liquors.


2020 ◽  
Vol 1 (1) ◽  
pp. 17-21
Author(s):  
Steve Oscar ◽  
◽  
Mohammed Nazim Uddin ◽  

Modern life is becoming more linked to our devices, and work is being done in a more regulated way. As life became more complicated, it is becoming challenging to keep track of human health and fitness, leading to unexpected illnesses and diseases. Moreover, a lack of activity monitoring and corresponding reminders is preventing the adoption of a healthier lifestyle. This research provides a practical approach for identifying Human Activity by using accelerometer data obtained from wearable devices. The model automatically finds patterns among 33 different physical exercises such as running, rowing, cycling, jogging, etc. and correctly identifies them. The principal component analysis algorithm was used on the statistical features to make the system more robust. Classification of the physical exercise was performed on the reduced features using WEKA. The overall accuracy of 85.51% was obtained using the 10-Fold Cross-Validation method and K nearest Neighbor Algorithm while 84% accuracy for Random Forest. The accuracy obtained was better than previous models and could improve recognition systems in monitoring user activity more precisely.


Author(s):  
L.N. Desinaini ◽  
Azizatul Mualimah ◽  
Dian C. R. Novitasari ◽  
Moh. Hafiyusholeh

AbstractParkinson’s disease is a neurological disorder in which there is a gradual loss of brain cells that make and store dopamine. Researchers estimate that four to six million people worldwide, are living with Parkinson’s. The average age of patients is 60 years old, but some are diagnosed at age 40 or even younger and the worst thing is some patients are late to find out that they have Parkinson's disease. In this paper, we present a diagnosis system based on Fuzzy K-Nearest Neighbor (FKNN) to detect Parkinson’s disease. We use Parkinson’s disease dataset taken from UCI Machine Learning Repository. The first step is normalize the Parkinson’s disease dataset and analyze using Principal Component Analysis (PCA). The result shows that there are four new factors that influence Parkinson’s disease with total variance is 85.719%. In classification step, we use several percentage of training data to classify (detect) the Parkinson's disease i.e. 50%, 60%, 70%, 75%, 80% and 90%. We also use k = 3, 5, 7, and 9. The classification result shows that the highest accuracy obtained for the percentage of training data is 90% and k = 5, where 19 are correctly classified i.e. 14 positive data and 5 negative data, while 1 positive data is classified incorrectly.Keywords: Parkinson's disease; Fuzzy K-Nearest Neighbor; Principal Component Analysis. AbstrakPenyakit Parkinson merupakan kelainan sel saraf pada otak yang menyebabkan hilangnya dopamin pada otak. Para peneliti mengestimasi bahwa, empat sampai enam juta orang di dunia, menderita Parkinson. Penyakit ini rata-rata diderita oleh pasien berusia 60 tahun, namun beberapa orang terdeteksi saat berusia 40 tahun atau lebih muda dan hal terburuk adalah seseorang terlambat untuk mendeteksinya. Di dalam artikel ini, kami menyajikan sistem diagnosa penyakit Parkinson menggunakan metode Fuzzy K-Nearest Neighbor (FKNN). Kami menggunakan Data uji yang diperoleh dari UCI Machine Learning Repository yang telah banyak diterapkan pada masalah klasifikasi. Tahapan pertama yang kami lakukan adalah menormalisasi data kemudian menganalisisnya menggunakan Analisis Komponen Utama (Principal Component Analysis). Hasil Analisis Komponen Utama menunjukkan bahwa terdapat empat factor baru yang mempengaruhi penyakit Parkinson dengan variansi total 87,719%. Pada tahap klasifikasi, kami menggunakan beberapa prosentase data latih untuk mendeteksi penyakit yaitu 50%, 60%, 70%, 75%, 80% and 90%. Selain itu, kami menggunakan beberapa nilai k yaitu 3, 5, 7, and 9. Hasil menunjukkan bahwa klasifikasi dengan akurasi tertinggi diperoleh untuk 90% data latih dengan k = 5, dimana 19 diklasifikasikan secara tepat yaitu 14 data positif dan 5 data negatif, sedangkan satu data positif tidak diklasifikasikan dengan tepat.Keywords: penyakit Parkinson; Fuzzy K-Nearest Neighbor; Analisis Komponen Utama.


Sign in / Sign up

Export Citation Format

Share Document