scholarly journals MED1 Deficiency in Macrophages Accelerates Intimal Hyperplasia via ROS Generation and Inflammation

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Yali Zhang ◽  
Yu Fu ◽  
Chenyang Zhang ◽  
Linying Jia ◽  
Nuo Yao ◽  
...  

Mediator complex subunit 1 (MED1) is a component of the mediator complex and functions as a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Previously, we showed that MED1 in macrophages has a protective effect on atherosclerosis; however, the effect of MED1 on intimal hyperplasia and mechanisms regulating proinflammatory cytokine production after macrophage MED1 deletion are still unknown. In this study, we report that MED1 macrophage-specific knockout (MED1ΔMac) mice showed aggravated neointimal hyperplasia, vascular smooth muscle cells (VSMCs), and macrophage accumulation in injured arteries. Moreover, MED1ΔMac mice showed increased proinflammatory cytokine production after an injury to the artery. After lipopolysaccharide (LPS) treatment, MED1ΔMac macrophages showed increased generation of reactive oxygen species (ROS) and reduced expression of peroxisome proliferative activated receptor gamma coactivator-1α (PGC1α) and antioxidant enzymes, including catalase and glutathione reductase. The overexpression of PGC1α attenuated the effects of MED1 deficiency in macrophages. In vitro, conditioned media from MED1ΔMac macrophages induced more proliferation and migration of VSMCs. To explore the potential mechanisms by which MED1 affects inflammation, macrophages were treated with BAY11-7082 before LPS treatment, and the results showed that MED1ΔMac macrophages exhibited increased expression of phosphorylated-p65 and phosphorylated signal transducer and activator of transcription 1 (p-STAT1) compared with the control macrophages, suggesting the enhanced activation of NF-κB and STAT1. In summary, these data showed that MED1 deficiency enhanced inflammation and the proliferation and migration of VSMCs in injured vascular tissue, which may result from the activation of NF-κB and STAT1 due to the accumulation of ROS.

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1353.2-1353
Author(s):  
A. Yadon ◽  
D. Ruelas ◽  
G. Min-Oo ◽  
J. Taylor ◽  
M. R. Warr

Background:Rheumatoid arthritis (RA) is characterized by chronic, uncontrolled joint inflammation and tissue destruction. Macrophages are thought to be key mediators in both the initiation and perpetuation of this pathology.1,2The RA synovium contains a complex inflammatory milieu that can stimulate macrophage-dependent production of proinflammatory cytokines through multiple signaling pathways.1,2Existing evidence indicates that toll-like receptors (TLRs) and interleukin-1 receptors (IL-1R) along with their agonists, damage-associated molecular patterns (DAMPs) and IL-1β, are highly expressed in RA joints and are important mediators of synovial macrophage activation and proinflammatory cytokine production.1-9IRAK4 (interleukin-1 receptor-associated kinase 4) is a serine/threonine kinase that facilitates TLR and IL-1R signaling in many cell types, including macrophages.10IRAK4 inhibition represents an opportunity to reduce proinflammatory cytokine production in the joints of patients with RA.Objectives:To investigate the effect of a highly selective IRAK4 inhibitor on proinflammatory cytokine production from human macrophages stimulated with synovial fluid from patients with RA.Methods:Primary human monocytes from 2 independent donors were differentiated for 6 days with granulocyte-macrophage colony-stimulating factor (GM-CSF) to generate human monocyte-derived macrophages (hMDMs). hMDMs were then pretreated with an IRAK4 inhibitor for 1 hour and subsequently stimulated for 24 hours with RA synovial fluid from 5 patients. Culture supernatants were then assessed for secretion of proinflammatory cytokines by MesoScale Discovery.Results:RA synovial fluid stimulation of hMDMs resulted in the production of several proinflammatory cytokines, including IL-6, IL-8, and TNFα. Pretreatment of hMDMs with an IRAK4 inhibitor resulted in the dose-dependent inhibition of IL-6, IL-8, and TNFα production, with an average EC50± SD of 27 ± 31, 26 ± 41, and 28 ± 22 nM, respectively. Maximal percent suppression ± SD of IL-6, IL-8, and TNFα were 76 ± 8.8, 73 ± 15, and 77 ± 13, respectively. To evaluate the specific IRAK4-dependent signaling pathways mediating this response, hMDMs were pretreated with inhibitors of TLR4 (TAK242) and IL-1R (IL-1RA) prior to stimulation with RA synovial fluid. Both TAK242 and IL-1RA inhibited proinflammatory cytokine production. For TAK242, maximal percent suppression ± SD of IL-6, IL-8, and TNFα were 39 ± 25, 48 ± 24, and 50 ± 21, respectively. For IL-1RA maximal percent suppression ± SD of IL-6, IL-8, and TNFα were 18 ± 18, 20 ± 23, and 16 ± 18, respectively. The broad range of inhibition across each stimulation highlights the complexity and variability in the signaling pathways mediating proinflammatory cytokine production from hMDMs stimulated with RA synovial fluid, but demonstrates that RA synovial fluid can stimulate proinflammatory cytokine production in hMDMs, at least partly, through IRAK4-dependent pathways.Conclusion:This work demonstrates that IRAK4 inhibition can suppress proinflammatory cytokine production from macrophages stimulated with synovial fluid from patients with RA and supports a potential pathophysiological role for IRAK4 in perpetuating chronic inflammation in RA.References:[1]Smolen JS, et al.Nat Rev Dis Primers.2018;4:18001.[2]Udalova IA, et al.Nat Rev Rheumatol.2016;12(8):472-485.[3]Joosten LAB, et al.Nat Rev Rheumatol.2016;12(6):344-357.[4]Huang QQ, Pope RM.Curr Rheumatol Rep.2009;11(5):357-364.[5]Roh JS, Sohn DH.Immune Netw.2018;18(4):e27.[6]Sacre SM, et al.Am J Pathol.2007;170(2):518-525.[7]Ultaigh SNA, et al.Arthritis Res Ther.2011;13(1):R33.[8]Bottini N, Firestein GS.Nat Rev Rheumatol.2013;9(1):24-33.[9]Firestein GS, McInnes IB.Immunity.2017;46(2):183-196.[10]Janssens S, Beyaert R.Mol Cell.2003;11(2):293-302.Disclosure of Interests:Adam Yadon Employee of: Gilead, Debbie Ruelas Employee of: Gilead, Gundula Min-Oo Employee of: Gilead, James Taylor Employee of: Gilead, Matthew R. Warr Employee of: Gilead


Sign in / Sign up

Export Citation Format

Share Document