scholarly journals Efficacy of MAVIG X-Ray Protective Drapes in Reducing CTO Operator Radiation

2021 ◽  
Vol 2021 ◽  
pp. 1-4
Author(s):  
Keir McCutcheon ◽  
Maarten Vanhaverbeke ◽  
Jérémie Dabin ◽  
Ruben Pauwels ◽  
Werner Schoonjans ◽  
...  

Background. The MAVIG X-ray protective drape (MXPD) has been shown to reduce operator radiation dose during percutaneous coronary interventions (PCI). Whether MXPDs are also effective in reducing operator radiation during chronic total occlusion (CTO) PCI, often with dual access, is unknown. Methods. We performed a prospective, randomized-controlled study comparing operator radiation dose during CTO PCI (n = 60) with or without pelvic MXPDs. The primary outcomes were the difference in first operator radiation dose (μSv) and relative dose of the first operator (radiation dose normalized for dose area product) at the level of the chest in the two groups. The effectiveness of MXPD in CTO PCI was compared with non-CTO PCI using a patient-level pooled analysis with a previously published non-CTO PCI randomized study. Results. The use of the MXPD was associated with a 37% reduction in operator dose (weighted median dose 26.0 (IQR 10.00–29.47) μSv in the drape group versus 41.8 (IQR 30.82–60.59) μSv in the no drape group; P < 0.001 ) and a 60% reduction in relative operator dose (median dose 3.5 (IQR 2.5–5.4) E/DAPx10−3 in the drape group versus 8.6 (IQR 4.2–12.5) E/DAPx10−3 in the no drape group; P = 0.001 ). MXPD was equally effective in reducing operator dose in CTO PCI compared with non-CTO PCI ( P value for interaction 0.963). Conclusions. The pelvic MAVIG X-ray protective drape significantly reduced CTO operator radiation dose. This trial is clinically registered with https://www.clinicaltrials.gov (unique identifier: NCT04285944).

2021 ◽  
pp. 152660282110385
Author(s):  
Zoltán Ruzsa ◽  
Ádám Csavajda ◽  
István Hizoh ◽  
Mónika Deák ◽  
Péter Sótonyi ◽  
...  

Background The aim of this randomized study was to compare the success and complication rates of different access sites for the treatment of superficial artery stenosis. Methods and Results A total of 180 consecutive patients were randomized in a prospective study to treat symptomatic superficial femoral artery stenosis via radial (RA), femoral (FA), or pedal artery (PA) access. Technical success was achieved in 96.7%, 100%, and 100% of the patients in the RA, FA, and PA groups, respectively (p=0.33). Secondary access sites were used in 30%, 3.3%, and 30% of the patients in the RA, FA, and PA access groups, respectively (p=0.0002). Recanalization for chronic total occlusion was performed in 34/36 (94.4%), 30/30 (100%), and 46/46 (100%) patients in the RA, FA, and PA groups, respectively (p=0.17). The X-ray dose was significantly lower in the PA group than that in the RA and FA access groups (63.1 vs 162 vs 153 Dyn, p=0.0004). The cumulative rates of access site complications in the RA, FA, and PA groups were 3.3% (0% major and 3.3% minor), 16.7% (3.3% major and 13.3% minor), and 3.3% (3.3% major and 0% minor) (p=0.0085), respectively. The cumulative incidence of MACEs at 6 months in the RA, FA, and PA groups was 5%, 6.7%, and 1.7%, respectively. The cumulative incidence of MALEs at 6 months in the RA, FA, and PA groups was 20%, 16.7%, and 9.2%, respectively (p=0.54). Conclusion Femoral artery intervention can be safely and effectively performed using radial, femoral, and pedal access, but radial and pedal access is associated with a lower access site complication rate and hospitalization. Pedal access is associated with a lower X-ray dose than that with radial and femoral access.


Author(s):  
Keir McCutcheon ◽  
Maarten Vanhaverbeke ◽  
Ruben Pauwels ◽  
Jérémie Dabin ◽  
Werner Schoonjans ◽  
...  

Background: Interventional cardiologists are occupationally exposed to high doses of ionizing radiation. The MAVIG X-ray protective drape (MXPD) is a commercially available light weight, lead-free shield placed over the pelvic area of patients to minimize operator radiation dose. The aim of this study was to examine the efficacy of the MXPD during routine cardiac catheterization, including percutaneous coronary interventions. Methods: We performed a prospective, randomized controlled study comparing operator radiation dose during cardiac catheterization and percutaneous coronary intervention (n=632) with or without pelvic MXPD. We measured operator radiation dose at 4 sites: left eye, chest, left ring finger, and right ring finger. The primary outcomes were the difference in first operator radiation dose (µSv) and relative dose of the first operator (radiation dose normalized for dose area product) at the level of the chest in the 2 groups. Results: The use of the MXPD was associated with a 50% reduction in operator radiation dose (median dose 30.5 [interquartile range, 23.0–39.7] µSv in no drape group versus 15.3 [interquartile range, 11.1–20.0] µSv in the drape group; P <0.001) and a 57% reduction in relative operator dose ( P <0.001). The largest absolute reduction in dose was observed at the left finger (median left finger dose for the no drape group was 104.9 [75.7–137.4] µSv versus 41.9 [32.6–70.6] µSv in the drape group; P <0.001). Conclusions: The pelvic MXPD significantly reduces first operator radiation dose during routine cardiac catheterization and percutaneous coronary intervention. Registration: URL: https://www.clinicaltrials.gov . Unique identifier: NCT04285944.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4554
Author(s):  
Ralph-Alexandru Erdelyi ◽  
Virgil-Florin Duma ◽  
Cosmin Sinescu ◽  
George Mihai Dobre ◽  
Adrian Bradu ◽  
...  

The most common imaging technique for dental diagnoses and treatment monitoring is X-ray imaging, which evolved from the first intraoral radiographs to high-quality three-dimensional (3D) Cone Beam Computed Tomography (CBCT). Other imaging techniques have shown potential, such as Optical Coherence Tomography (OCT). We have recently reported on the boundaries of these two types of techniques, regarding. the dental fields where each one is more appropriate or where they should be both used. The aim of the present study is to explore the unique capabilities of the OCT technique to optimize X-ray units imaging (i.e., in terms of image resolution, radiation dose, or contrast). Two types of commercially available and widely used X-ray units are considered. To adjust their parameters, a protocol is developed to employ OCT images of dental conditions that are documented on high (i.e., less than 10 μm) resolution OCT images (both B-scans/cross sections and 3D reconstructions) but are hardly identified on the 200 to 75 μm resolution panoramic or CBCT radiographs. The optimized calibration of the X-ray unit includes choosing appropriate values for the anode voltage and current intensity of the X-ray tube, as well as the patient’s positioning, in order to reach the highest possible X-rays resolution at a radiation dose that is safe for the patient. The optimization protocol is developed in vitro on OCT images of extracted teeth and is further applied in vivo for each type of dental investigation. Optimized radiographic results are compared with un-optimized previously performed radiographs. Also, we show that OCT can permit a rigorous comparison between two (types of) X-ray units. In conclusion, high-quality dental images are possible using low radiation doses if an optimized protocol, developed using OCT, is applied for each type of dental investigation. Also, there are situations when the X-ray technology has drawbacks for dental diagnosis or treatment assessment. In such situations, OCT proves capable to provide qualitative images.


Author(s):  
Anwar Ameen Hezam Saeed ◽  
Noorfidza Yub Harun ◽  
Suriati Sufian ◽  
Muhammad Roil Bilad ◽  
Zaki Yamani Zakaria ◽  
...  

Development of strategies for removing heavy metals from aquatic environments is in high demand. Cadmium is one of the most dangerous metals in the environment, even under extremely low quantities. In this study, kenaf and magnetic biochar composite were prepared for the adsorption of Cd2+. The synthesized biochar was characterized using (a vibrating-sample magnetometer VSM), Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The adsorption batch study was carried out to investigate the influence of pH, kinetics, isotherm, and thermodynamics on Cd2+ adsorption. The characterization results demonstrated that the biochar contained iron particles that help in improving the textural properties (i.e., surface area and pore volume), increasing the number of oxygen-containing groups, and forming inner-sphere complexes with oxygen-containing groups. The adsorption study results show that optimum adsorption was achieved under pH 5–6. An increase in initial ion concentration and solution temperature resulted in increased adsorption capacity. Surface modification of biochar using iron oxide for imposing magnetic property allowed for easy separation by external magnet and regeneration. The magnetic biochar composite also showed a higher affinity to Cd2+ than the pristine biochar. The adsorption data fit well with the pseudo-second-order and the Langmuir isotherm, with the maximum adsorption capacity of 47.90 mg/g.


2021 ◽  
pp. 152660282110074
Author(s):  
Quirina M. B. de Ruiter ◽  
Frans L. Moll ◽  
Constantijn E. V. B. Hazenberg ◽  
Joost A. van Herwaarden

Introduction: While the operator radiation dose rates are correlated to patient radiation dose rates, discrepancies may exist in the effect size of each individual radiation dose predictors. An operator dose rate prediction model was developed, compared with the patient dose rate prediction model, and converted to an instant operator risk chart. Materials and Methods: The radiation dose rates (DRoperator for the operator and DRpatient for the patient) from 12,865 abdomen X-ray acquisitions were selected from 50 unique patients undergoing standard or complex endovascular aortic repair (EVAR) in the hybrid operating room with a fixed C-arm. The radiation dose rates were analyzed using a log-linear multivariable mixed model (with the patient as the random effect) and incorporated varying (patient and C-arm) radiation dose predictors combined with the vascular access site. The operator dose rate models were used to predict the expected radiation exposure duration until an operator may be at risk to reach the 20 mSv year dose limit. The dose rate prediction models were translated into an instant operator radiation risk chart. Results: In the multivariate patient and operator fluoroscopy dose rate models, lower DRoperator than DRpatient effect size was found for radiation protocol (2.06 for patient vs 1.4 for operator changing from low to medium protocol) and C-arm angulation. Comparable effect sizes for both DRoperator and DRpatient were found for body mass index (1.25 for patient and 1.27 for the operator) and irradiated field. A higher effect size for the DRoperator than DRpatient was found for C-arm rotation (1.24 for the patient vs 1.69 for the operator) and exchanging from femoral access site to brachial access (1.05 for patient vs 2.5 for the operator). Operators may reach their yearly 20 mSv year dose limit after 941 minutes from the femoral access vs 358 minutes of digital subtraction angiography radiation from the brachial access. Conclusion: The operator dose rates were correlated to patient dose rate; however, C-arm angulation and changing from femoral to brachial vascular access site may disproportionally increase the operator radiation risk compared with the patient radiation risk. An instant risk chart may improve operator dose awareness during EVAR.


2021 ◽  
pp. 1-12
Author(s):  
Ignacio O. Romero ◽  
Changqing Li

BACKGROUND: Pencil beam X-ray luminescence computed tomography (XLCT) imaging provides superior spatial resolution than other imaging geometries like sheet beam and cone beam geometries. However, the pencil beam geometry suffers from long scan times, resulting in concerns overdose which discourages the use of pencil beam XLCT. OBJECTIVE: The dose deposited in pencil beam XLCT imaging was investigated to estimate the dose from one angular projection scan with three different X-ray sources. The dose deposited in a typical small animal XLCT imaging was investigated. METHODS: A Monte Carlo simulation platform, GATE (Geant4 Application for Tomographic Emission) was used to estimate the dose from one angular projection scan of a mouse leg model with three different X-ray sources. Dose estimations from a six angular projection scan by three different X-ray source energies were performed in GATE on a mouse trunk model composed of muscle, spine bone, and a tumor. RESULTS: With the Sigray source, the bone marrow of mouse leg was estimated to have a radiation dose of 44 mGy for a typical XLCT imaging with six angular projections, a scan step size of 100 micrometers, and 106 X-ray photons per linear scan. With the Sigray X-ray source and the typical XLCT scanning parameters, we estimated the dose of spine bone, muscle tissues, and tumor structures of the mouse trunk were 38.49 mGy, 15.07 mGy, and 16.87 mGy, respectively. CONCLUSION: Our results indicate that an X-ray benchtop source (like the X-ray source from Sigray Inc.) with high brilliance and quasi-monochromatic properties can reduce dose concerns with the pencil beam geometry. Findings of this work can be applicable to other imaging modalities like X-ray fluorescence computed tomography if the imaging protocol consists of the pencil beam geometry.


2017 ◽  
Vol 27 (01n02) ◽  
pp. 37-42
Author(s):  
T. Segawa ◽  
S. Harada ◽  
S. Ehara ◽  
K. Ishii ◽  
T. Sato ◽  
...  

Encapsulated protamine-hyaluronic acid particles containing carboplatin were prepared and their ability to release carboplatin was tested in vivo. Protamine–hyaluronic acid particles containing carboplatin were prepared by mixing protamine (1.6 mg) and hyaluronic acid (1.28 mg) into a 5 mg/mL carboplatin solution for 30 min at room temperature. A 1 mL solution of protamine–hyaluronic acid particles was poured into an ampule of COATSOME[Formula: see text] EL-010 (Nichiyu, Tokyo, Japan), shaken three times by hand, and allowed to incubate at room temperature for 15 min. Following that, 10 or 20 Gy of 100 kiloelectronvolt (KeV) soft X-ray was applied. The release of carboplatin was imaged using a microparticle-induced X-ray emission (PIXE) camera. The amount of carboplatin released was expressed as the amount of platinum released and measured via quantitative micro-PIXE analysis. The diameter of the generated encapsulated particles measured [Formula: see text] nm (mean ± standard error). The release of carboplatin from the encapsulated protamine–hyaluronic acid particles was observed under a micro-PIXE camera. The amount of carboplatin released was [Formula: see text] under 10 Gy of radiation, and [Formula: see text] under 20 Gy of radiation, which was a sufficient dose for cancer treatment. However, 10 or 20 Gy of radiation is much greater than the dose used for clinical cancer treatment (2 Gy). Further research to reduce the radiation dose to 2 Gy in order to release sufficient carboplatin for cancer treatment is required.


2014 ◽  
Vol 880 ◽  
pp. 53-56 ◽  
Author(s):  
Sergei Stuchebrov ◽  
Andrey Batranin ◽  
Dan Verigin ◽  
Yelena Lukyanenko ◽  
Maria Siniagina ◽  
...  

Two setups for X-ray visualization of objects interior structure were designed and assembled in TPU. These radiographic systems are based on linear gas-discharge and GaAs semiconductor detectors. During investigation of biological object control of radiation doses has a high priority. In this report radiation dose calculations in X-ray visualization are presented. These calculation also includes dose calculations of sinograms which are used for reconstruction of tomography slices.


Sign in / Sign up

Export Citation Format

Share Document