scholarly journals Pristine and Magnetic Kenaf Fiber Biochar for Cd2+ Adsorption from Aqueous Solution

Author(s):  
Anwar Ameen Hezam Saeed ◽  
Noorfidza Yub Harun ◽  
Suriati Sufian ◽  
Muhammad Roil Bilad ◽  
Zaki Yamani Zakaria ◽  
...  

Development of strategies for removing heavy metals from aquatic environments is in high demand. Cadmium is one of the most dangerous metals in the environment, even under extremely low quantities. In this study, kenaf and magnetic biochar composite were prepared for the adsorption of Cd2+. The synthesized biochar was characterized using (a vibrating-sample magnetometer VSM), Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The adsorption batch study was carried out to investigate the influence of pH, kinetics, isotherm, and thermodynamics on Cd2+ adsorption. The characterization results demonstrated that the biochar contained iron particles that help in improving the textural properties (i.e., surface area and pore volume), increasing the number of oxygen-containing groups, and forming inner-sphere complexes with oxygen-containing groups. The adsorption study results show that optimum adsorption was achieved under pH 5–6. An increase in initial ion concentration and solution temperature resulted in increased adsorption capacity. Surface modification of biochar using iron oxide for imposing magnetic property allowed for easy separation by external magnet and regeneration. The magnetic biochar composite also showed a higher affinity to Cd2+ than the pristine biochar. The adsorption data fit well with the pseudo-second-order and the Langmuir isotherm, with the maximum adsorption capacity of 47.90 mg/g.

2019 ◽  
Vol 79 (11) ◽  
pp. 2106-2115 ◽  
Author(s):  
Fengfeng Ma ◽  
Baowei Zhao ◽  
Jingru Diao

Abstract A magnetic cotton stalk biochar (MCSBC) was synthesized through chemical co-precipitation, based on cotton stalk biochar (CSBC). The MCSBC and CSBC were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and vibrating sample magnetometry. The characterization analyses showed that the magnetization process endowed the CSBC with excellent magnetic properties with a superparamagnetic magnetization of 27.59 emu/g. Batch adsorption experiment results indicated that the Cr(VI) maximum adsorption capacity of MCSBC was 20.05 mg/g, which was higher than that of CSBC (18.77 mg/g). The adsorption kinetic data were well fitted by the pseudo-second-order model and the adsorption isotherms were well represented by the Sips isotherm model. The thermodynamic studies indicated that the adsorption process was spontaneous and endothermic, and the entropy increased. The potential adsorption mechanism was the electrostatic adsorption of anionic Cr(VI) to the positively charged MCSBC surface, the reduction of Cr(VI) into Cr(III) and the complexation of Cr(III) by oxygen-containing functional groups of MCSBC. The regeneration studies showed that MCSBC kept 80% of its initial Cr(VI) adsorption capacity in the cycle. All the findings suggest that this novel magnetic biochar could be used in the field of Cr(VI)-containing wastewater treatment.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 942 ◽  
Author(s):  
Huo-Xi Jin ◽  
Hong Xu ◽  
Nan Wang ◽  
Li-Ye Yang ◽  
Yang-Guang Wang ◽  
...  

The ability to remove toxic heavy metals, such as Pb(II), from the environment is an important objective from both human-health and ecological perspectives. Herein, we describe the fabrication of a novel carboxymethylcellulose-coated metal organic material (MOF-5–CMC) adsorbent that removed lead ions from aqueous solutions. The adsorption material was characterized by Fourier-transform infrared spectroscopy, X-ray diffractometry, scanning electron microscopy, and X-ray photoelectron spectroscopy. We studied the functions of the contact time, pH, the original concentration of the Pb(II) solution, and adsorption temperature on adsorption capacity. MOF-5–CMC beads exhibit good adsorption performance; the maximum adsorption capacity obtained from the Langmuir isotherm-model is 322.58 mg/g, and the adsorption equilibrium was reached in 120 min at a concentration of 300 mg/L. The adsorption kinetics is well described by pseudo-second-order kinetics, and the adsorption equilibrium data are well fitted to the Langmuir isotherm model (R2 = 0.988). Thermodynamics experiments indicate that the adsorption process is both spontaneous and endothermic. In addition, the adsorbent is reusable. We conclude that MOF-5–CMC is a good adsorbent that can be used to remove Pb(II) from aqueous solutions.


2021 ◽  
Author(s):  
You Wu ◽  
Zuannian Liu ◽  
Bakhtari Mohammad Fahim ◽  
Junnan Luo

Abstract In this study, MIL-101(Fe), MIL-101(Fe,Cu), and Graphene Oxide (GO) /MIL-101(Fe,Cu) were synthesized to compose a novel sorbent. The adsorption properties of these three MOFs-based composites were compared toward the removal of phosphate. Furthermore, the influencing factors including reaction time, pH, temperature and initial concentration on the adsorption capacity of phosphate on these materials as well as the reusability of the material were discussed. The structure of fabricated materials and the removal mechanism of phosphate on the composite material were analyzed by Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption-desorption analysis and zeta potential. The results show that the maximum adsorption capacity of phosphate by the composite GO/MIL-101(Fe,Cu)-2% was 204.60 mg·g− 1, which is higher than that of MIL-101(Fe,Cu) and MIL-101(Fe). likewise the specific surface area of GO/MIL-101(Fe,Cu)-2% is 778.11 m2/g is higher than that of MIL-101(Fe,Cu) and MIL-101(Fe),which are 747.75 and 510.66m2/g respectively. The adsorption mechanism of phosphate is electrostatic attraction, form coordination bonds and hydrogen bonds. The fabricated material is a promising adsorbent for the removal of phosphate with good reusability.


2019 ◽  
Vol 12 (02) ◽  
pp. 1950014 ◽  
Author(s):  
Wei Yang ◽  
Sheng Guo ◽  
Jinyi Chen ◽  
Abdul Naeem ◽  
Hussain Fida ◽  
...  

Iron-modified montmorillonite (Mt) composites with controlled interlayer spacing were successfully synthesized through Fenton-like process with the addition of different concentrations of Rhodamine B (RhB). The physicochemical properties of the resulting samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). It was worth noting that the adsorption efficiency of the composite for tetracycline hydrochloride (TC) increased with the increase of the RhB concentration during preparation. The maximum adsorption capacity of the as-prepared composite toward TC was 192.4[Formula: see text]mg/g, which was much higher than that of the Mt (144.9[Formula: see text]mg/g). Moreover, the as-prepared adsorbent showed high adsorption capacity of TC in a wide pH range of 3.0–9.0. The adsorption process followed the pseudo-second-order equation and the Langmuir isotherm model, suggesting the mono-layer chemisorption of the adsorption process. The present work may provide a new strategy for the design and fabrication of functional clay-based materials.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Changqing Zhao ◽  
Yanwei Cui ◽  
Fang Fang ◽  
Si Ok Ryu ◽  
Jiarui Huang

Ce-1,1′-biphenyl-4,4′-dicarboxylic acid (Ce-bpdc), a novel type of metal organic framework, was synthesized and applied to remove excessive fluoride from water. The structure and morphology of Ce-bpdc were measured by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The effects, such as saturated adsorption capacity, HCO3-, and pH, were investigated. The optimal pH value for fluoride adsorption was the range from 5 to 6. The coexisting bicarbonate anions have a little influence on fluoride removal. The fluoride adsorption over the Ce-bpdc adsorbent could reach its equilibrium in about 20 min. The Ce-bpdc coordination complex exhibited high binding capacity for fluoride ions. The maximum adsorption capacity calculated from Langmuir model was high up to 45.5 mg/g at 298 K (pH = 7.0) and the removal efficiency was greater than 80%. In order to investigate the mechanism of fluoride removal, various adsorption isotherms such as Langmuir and Freundlich were fitted. The experimental data revealed that the Langmuir isotherm gave a more satisfactory fit for fluoride removal. Finally, the tested results of ground water samples from three places, Yuefang, Jiangji, and Sanyi which exhibited high removal efficiency, also demonstrate the potential utility of the Ce-bpdc as an effective adsorbent.


2020 ◽  
Vol 38 (5-6) ◽  
pp. 151-167 ◽  
Author(s):  
Yong-Hua Zhao ◽  
Jin-Tao Geng ◽  
Jie-Chuan Cai ◽  
Yu-Fu Cai ◽  
Chun-Yan Cao

The natural diatomite was treated with NaOH to obtain alkali-activated diatomite. The materials were systematically characterized by X-ray powder diffraction, X-ray fluorescence, Fourier transform infrared spectroscopic, scanning electron microscopy, and N2 adsorption–desorption. Meanwhile, the potential use of alkali-activated diatomite as adsorbent for the removal of basic fuchsin from aqueous solution was assessed by batch experiment. Results indicated that the structure and textural properties of diatomite were obviously changed via alkali activation, and then affecting its adsorption performance. The adsorption capacity of alkali-activated diatomite for basic fuchsin was higher than that of natural diatomite. In the case of alkali-activated diatomite, its adsorption capacity was increased with increasing the activation temperature, and the diatomite activated at 115°C (alkali-activated diatomite-115) exhibited the maximum adsorption capacity. The pseudo-first-order kinetics and the Sips isotherm model were preferable to describe the adsorption process of basic fuchsin on alkali-activated diatomite-115 and the thermodynamic parameters indicated that the adsorption process was endothermic and spontaneous.


2021 ◽  
Vol 406 ◽  
pp. 457-472
Author(s):  
Aicha Kourim ◽  
Moulay Abderrahmane Malouki ◽  
Aicha Ziouche ◽  
Mouna Boulahbal ◽  
Madjda Mokhtari

In this study, the adsorption of copper Cu (II) from aqueous solution, on Tamanrasset’s clay which is low cost adsorbent, was studied using batch experiments. The adsorption study includes both equilibrium adsorption isotherms and kinetics. The characterization of the adsorbent necessitated several methods such as X-Ray Diffraction, Scanning Electron Microscopy coupled with Energy Dispersive X-ray, BET for specific surface area determination, Fourier transform infrared spectroscopy and thermogravimetric analysis. Indeed, various parameters were investigated such as contact time, initial metal ion concentration, mass of solid, pH of the solution and temperature. The adsorption process as batch study was investigated under the previews experimental parameters. The results revealed that the adsorption capacity of Cu2+ is maximized at naturel pH of metal 5.5. Removal of copper by the clay of Tamanrasset (kaolinite) achieved equilibrium within 50 minutes; the results obtained were found to be fitted by the pseudo-second order kinetics model. The equilibrium process was well described by the Langmuir model and the maximum adsorption capacity was found to be 26.59 mg/g.


2021 ◽  
Vol 22 (17) ◽  
pp. 9164
Author(s):  
Diego R. Gondim ◽  
Juan A. Cecilia ◽  
Thaina N. B. Rodrigues ◽  
Enrique Vilarrasa-García ◽  
Enrique Rodríguez-Castellón ◽  
...  

Typical porous silica (SBA-15) has been modified with pore expander agent (1,3,5-trimethylbenzene) and fluoride-species to diminish the length of the channels to obtain materials with different textural properties, varying the Si/Zr molar ratio between 20 and 5. These porous materials were characterized by X-ray Diffraction (XRD), N2 adsorption/desorption isotherms at −196 °C and X-ray Photoelectron Spectroscopy (XPS), obtaining adsorbent with a surface area between 420–337 m2 g−1 and an average pore diameter with a maximum between 20–25 nm. These materials were studied in the adsorption of human blood serum proteins (human serum albumin—HSA and immunoglobulin G—IgG). Generally, the incorporation of small proportions was favorable for proteins adsorption. The adsorption data revealed that the maximum adsorption capacity was reached close to the pI. The batch purification experiments in binary human serum solutions showed that Si sample has considerable adsorption for IgG while HSA adsorption is relatively low, so it is possible its separation.


Author(s):  
Mohamed Sulyman ◽  
Sadig Al-Marog ◽  
Khaled Al-Azabi ◽  
Emhammed Dawed ◽  
Amal Abukrain

In this study, treated coffee ground wastes (CGW) was evaluated for adsorption of methylene blue (MB) from contaminated solution using contact time, initial dye concentrations, adsorbent dose, and solution temperature as operational factors. The adsorbent was treated using chemical activation with potassium carbonate (K2CO3), followed by thermomechanical treatment via an extrusion process. The characterization study of the adsorbent was conducted using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) and X-ray fluorescence spectroscopy techniques. The adsorption equilibrium was reached after 30 min for MB and it was observed also that adsorption capacity decreased but percentage removal increased with increases in adsorbent mass. The maximum adsorption capacity of K2CO3-coffee powder was found to be 169.49 mg/g.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 741 ◽  
Author(s):  
Choe Choong ◽  
Gooyong Lee ◽  
Min Jang ◽  
Chang Park ◽  
Shaliza Ibrahim

Magnesium silicate impregnated onto palm-shell waste activated carbon (PPAC) underwent mild hydrothermal treatment under one-pot synthesis, designated as PPAC-MC. Various impregnation ratios from 25 to 300% of MgSiO3 onto PPAC were tested. High levels of MgSiO3 led to high Cu(II) adsorption capacity. A ratio of 1:1 (PPAC-MS 100) was considered optimum because of its chemical stability in solution. The maximum adsorption capacity of PPAC-MS 100 for Cu(II) obtained by isotherm experiments was 369 mg g−1. The kinetic adsorption data fitted to pseudo-second-order model revealed as chemisorption. Increasing ionic strength reduced Cu(II) adsorption capacity due to the competition effect between Na+ and Cu2+. In addition, PPAC-MS 100 showed sufficient adsorption capacity for the removal of Zn(II), Al(III), Fe(II), Mn(II), and As(V), with adsorption capacities of 373 mg g−1, 244 mg g−1, 234 mg g−1, 562 mg g−1, 191 mg g−1, respectively. Three regeneration studies were also conducted. PPAC-MS was characterized using Fourier Transformed Infrared (FTIR), X-Ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Field Emission Scanning Electron Microscope (FESEM). Overall, PPAC-MS 100 is a competitive adsorbent due to its high sorption capacity and sufficient regeneration rate, while remaining economical through the reuse of palm-shell waste materials.


Sign in / Sign up

Export Citation Format

Share Document