scholarly journals Temperature Control Technology for Construction of Jinsha River Bridge

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Hui-Wu Jin ◽  
Guo-An Wang ◽  
Zhan-Ming Chen

The key problem of mass concrete temperature control is to effectively control the maximum temperature inside concrete, the temperature difference between inside and outside concrete, and the temperature difference between surface and environment. The size of the main tower cap of No. 3 Jinsha River Bridge is 37 m × 23.5 m × 5.5 m, and the cubic volume of concrete reaches 4782.3 m3, which is poured in two times. In order to ensure construction quality of mass concrete structure, prevent the large mass concrete temperature stress, through the numerical simulation of the temperature control and optimization scheme, by optimizing the mixture ratio design, reducing the temperature of concrete pouring into the mold, cooling water cycling, insulation keeping in good health and a series of measures to effectively achieve the control goal, and eliminating the temperature cracks. The measured data show that the maximum temperature inside concrete, the temperature difference between inside and outside, and the temperature difference between surface and environment are qualified, but the temperature difference control of cooling water inlet and outlet has hysteresis effect, and the temperature difference between inlet and outlet will be greater than 10°C, which should be noticed.

2013 ◽  
Vol 405-408 ◽  
pp. 2739-2742 ◽  
Author(s):  
Zhen Hong Wang ◽  
Shu Ping Yu ◽  
Yi Liu

To solve the problem of cracks developing on thin-walled concrete structures during construction, the authors expound on the causes of cracks and the crack mechanism. The difference between external and internal temperatures, basic temperature difference and constraints are the main reasons of crack development on thin-walled concrete structures. Measures such as optimizing concrete mixing ratio, improving construction technology, and reducing temperature difference can prevent thin-walled concrete structures from cracking. Moreover, water-pipe cooling technology commonly used in mass concrete can be applied to thin-walled concrete structures to reduce temperature difference. This method is undoubtedly a breakthrough in anti-cracking technology for thin-walled concrete structures, particularly for thin-walled high-performance concrete structures. In addition, a three-dimensional finite element method is adopted to simulate the calculation of temperature control and anti-cracking effects f. Results show the apparent temperature controlling effect of water-pipe cooling for thin-walled concrete structures.


2021 ◽  
Vol 302 ◽  
pp. 124167
Author(s):  
Xiaochun Lu ◽  
Bofu Chen ◽  
Bin Tian ◽  
Yangbo Li ◽  
Congcong Lv ◽  
...  

2012 ◽  
Vol 238 ◽  
pp. 272-277
Author(s):  
Xiang Dong Xu ◽  
Jin Chao Yue

Yongding RCC gravity dam with large project scale is in the construction all over the year, and the big temperature stress is a key factor for construction quality and progress. The temperature of the RCC dam in typical season with and without control conditions was analyzed by FEM, the temperature situation in typical season of RCC dam was controlled by the embedded cooling water pipes by practical method. Key points in concrete temperature control during high temperature season are found out, the counter measures and issues to be noticed are put forward.


2017 ◽  
Vol 9 (2) ◽  
pp. 168781401769050 ◽  
Author(s):  
Yongrong Qiu ◽  
Guoxin Zhang

Pipe cooling is one of the most important measures of mass concrete temperature control, but pipe cooling has its advantages and disadvantages. Inappropriate pipe-cooling water temperature may result in excessive stress and crack. Considering the fact that concrete is a type of three-phase composite material and the sizes of cooling pipe and aggregate are basically on the same scale, the mesoscopic heterogeneity of concrete may have a great effect on the stress field surrounding the pipe. This article computes the pipe cooling–induced stress and damage and analyzes the differences between the homogeneous model and heterogeneous model based on mesoscopic mechanics. In this study, both linear elastic analysis and nonlinear damage analysis are performed; elastic modulus and creep are used as a function of concrete age; and several factors such as temperature difference, multistep cooling mode, and earlier cooling are also studied. The research results show that due to the mesoscopic heterogeneity characteristics of concrete, there is a great deal of difference between homogeneous model and heterogeneous model; pipe cooling can lead to large residual stress around the aggregate and produce a large range of damage, and previous homogeneous model indeed underestimates the effect of cooling-induced stress; using multistep cooling and early cooling mode can reduce this damage; the cooling-induced damage has significant influence on the anti-crack performance of concrete. In the final, based on the research results, the temperature difference between the concrete and pipe water of the second-phase cooling was recommended to be controlled at approximately 5°C.


2011 ◽  
Vol 197-198 ◽  
pp. 1389-1394
Author(s):  
Sun Yi Chen

When the operating process of delay coking is cyclically changing from 25°C to 500°C, it would usually induce the effect of heat treatment on the shell of coke drum. After a special model of the kinetic medium climbing along the inside-wall of the coke drum at a steady rate set up, the resulting two-dimensional kinetic temperature field of shell in radial and axial directions has been calculated and analyzed by FEM. The relation between the material physical property of the shell and its temperature has been considered. The results show that the radial temperature difference or the axial temperature difference caused by the cooling water is more than that caused by the hot oil. The maximum temperature difference between the inside-wall and the outside-wall is 40°C below the medium level, 30mm by the hot oil and 60 °C or 25 mm by the cooling water. The circumferential uneven temperature field, location and concave/convex or incline/bend of body have been surveyed and analyzed. The lat-circle deformation of transverse section has been discussed.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5142
Author(s):  
Peng Yu ◽  
Ruiqing Li ◽  
Dapeng Bie ◽  
Xiancai Liu ◽  
Xiaomin Yao ◽  
...  

For a long time, temperature control and crack prevention of mass concrete is a difficult job in engineering. For temperature control and crack prevention, the most effective and common-used method is to embed cooling pipe in mass concrete. At present, there still exists some challenges in the precise simulation of pipe cooling in mass concrete, which is a complex heat-flow coupling problem. Numerical simulation is faced with the problem of over-simplification and inaccuracy. In this study, precise simulation of heat-flow coupling of pipe cooling in mass concrete is carried out based on finite element software COMSOL Multiphysics 5.4. Simulation results are comprehensively verified with results from theoretical solutions and equivalent algorithms, which prove the correctness and feasibility of precise simulation. Compared with an equivalent algorithm, precise simulation of pipe cooling in mass concrete can characterize the sharp temperature gradient around cooling pipe and the temperature rise of cooling water along pipeline more realistically. In addition, the cooling effects and local temperature gradient under different water flow (0.60 m3/h, 1.20 m3/h, and 1.80 m3/h) and water temperature (5 °C, 10 °C, and 15 °C) are comprehensively studied and related engineering suggestions are given.


2014 ◽  
Vol 578-579 ◽  
pp. 1240-1246
Author(s):  
Jin Hui Li ◽  
Ke Xin Liu ◽  
Liu Qing Tu ◽  
Yun Pang Jiao

As the complex structure, large size, hot climate, aggressive corrosive environment and high concrete strength grade for Super-large Section Precast Immersed Tube of Hong Kong-Zhuhai-Macao Bridge, crack control of concrete was difficult. On the basis of simulating analysis on thermal stress, temperature control design was carried out. Harmful crack could be effective controlled by series of treatment measures during construction period such as optimization of raw materials, preparation of low heat and shrinkage concrete, controlling concrete raw material temperature, mixing concrete with ice shavings and cooling water, setting up automatic maintenance system and automatic temperature monitoring system. From the monitoring results, the temperature monitoring results were consistent with the simulation data, and the maximum temperature and the temperature difference between concrete surface and internal concrete were met the requirement of temperature control standard. Moreover, the precast immersed tube didn’t appear harmful crack.


2013 ◽  
Vol 444-445 ◽  
pp. 849-853
Author(s):  
Jian Hua Cui ◽  
Yong Feng Qi ◽  
Jie Su

Under the action of annual change and sudden drop of air temperature, thermal induced cracking will occur in concrete dam during the operation period. For exploring the temperature control measures for crack prevention, taking a concrete gravity dam section as the research object, sensitivity analyses to the factors which affecting the water-cooling effect are conducted with 3D FEM, some significant suggestions for the water cooling are presented. The results show that, the stresses of the dam surface will decrease to a certain extent after water cooling in the operation period using the cooling water pipe which embedded during construction period, and the cracking risk of the dam will reduce. The study provides a new train of thought for the temperature control and crack prevention of the mass concrete during the operation period.


2010 ◽  
Vol 168-170 ◽  
pp. 1117-1121
Author(s):  
Xiao Yong Li ◽  
Zhi Gang Zhang

An experimental study is conducted to simulate the thermal field in mass concrete. Accurate prediction of the thermal stress by analysis is quite difficult particularly at early ages, due to uncertain age-dependent properties of concrete. A series of tests was conducted in which the temperature was measured for a large number of observation points. The effect of aging and the amount of measuring points on thermal field development that can occur in realistic structures was evaluated. Numerical simulations of the thermal field setup were also performed using the finite element with ANSYS software to verify and extend the experimental interpretation and to determine the maximum temperature value which would occur under construction process. Mass concrete temperature field and stress field for specific projects were measured and analyzed. Numerical simulation of mass concrete temperature field for the actual project is compared with the measured results. The results show that the temperature field of numerical simulation results and measured curves result are of the same trend. And it is feasible that mass concrete temperature field is simulated based on ANSYS.


Sign in / Sign up

Export Citation Format

Share Document