scholarly journals Antihyperuricemic Effect of Dendropanax morbifera Leaf Extract in Rodent Models

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Dongho Lee ◽  
Jin-Kyoung Kim ◽  
Yongjae Han ◽  
Kwang Il Park

Dendropanax morbifera is a well-known traditional medicine used in China and Korea to treat intestinal disorders, urosis, diuresis, and chronic glomerulonephritis. Hyperuricemia is a metabolic disorder characterized by a high uric acid level in serum due to an imbalance between uric acid production and excretion and causes gout. Recently, the prevalence of hyperuricemia worldwide has been continuously increasing. Xanthine oxidase (XOD) inhibitors (allopurinol (ALP) and febuxostat) and uricosuric agents (benzbromarone and probenecid) are used to treat hyperuricemia clinically. However, because these drugs are poorly tolerated and cause side effects, such as kidney diseases, hepatotoxicity, gastrointestinal symptoms, and hypersensitivity syndrome, only a limited number of drugs are available. We investigated the antihyperuricemic effects of Dendropanax morbifera leaf ethanol extract (DMLE) and its underlying mechanisms of action through in vitro and in vivo studies. We evaluated uric acid levels in serum and urine, and xanthine oxidase (XOD) inhibition activity in the serum and liver tissue of a hyperuricemic rat model of potassium oxonate (PO)-induced hyperuricemic rats. In vitro study, XOD-inhibitory activity was the lowest among the test substances at the IC50 of ALP. However, the IC50 of DMLE-70 was significantly low compared with that of other DMLEs ( p < 0.05 ). In PO-induced hyperuricemic rats, uric acid (UA) levels in serum and urine were significantly reduced in all DMLE-70 and allopurinol-treated (ALT) groups than in the PC group ( p < 0.05 ). UA levels in urine were lower than those in serum in all DME groups. In PO-induced hyperuricemic rats, DMEE-200 reduced UA concentration in serum and increased UA excretion in the urine. These findings suggest that DMLE exerts antihyperuricemic and uricosuric effects on promoting UA excretion by enhanced secretion and inhibition of UA reabsorption in the kidneys. Thus, DMLE may be a potential treatment for hyperuricemia and gout.

Marine Drugs ◽  
2019 ◽  
Vol 17 (5) ◽  
pp. 276 ◽  
Author(s):  
Marco Pelin ◽  
Jane Kilcoyne ◽  
Chiara Florio ◽  
Philipp Hess ◽  
Aurelia Tubaro ◽  
...  

Background: Azaspiracids (AZAs) are marine toxins that are produced by Azadinium and Amphidoma dinoflagellates that can contaminate edible shellfish inducing a foodborne poisoning in humans, which is characterized by gastrointestinal symptoms. Among these, AZA1, -2, and -3 are regulated in the European Union, being the most important in terms of occurrence and toxicity. In vivo studies in mice showed that, in addition to gastrointestinal effects, AZA1 induces liver alterations that are visible as a swollen organ, with the presence of hepatocellular fat droplets and vacuoles. Hence, an in vitro study was carried out to investigate the effects of AZA1, -2, and -3 on liver cells, using human non-tumor IHH hepatocytes. Results: The exposure of IHH cells to AZA1, -2, or -3 (5 × 10−12–1 × 10−7 M) for 24 h did not affect the cell viability and proliferation (Sulforhodamine B assay and 3H-Thymidine incorporation assay), but they induced a significant concentration-dependent increase of mitochondrial dehydrogenases activity (MTT reduction assay). This effect depends on the activity of mitochondrial electron transport chain complex I and II, being counteracted by rotenone and tenoyl trifluoroacetone, respectively. Furthermore, AZAs-increased mitochondrial dehydrogenase activity was almost totally suppressed in the K+-, Cl−-, and Na+-free media and sensitive to the specific inhibitors of KATP and hERG potassium channels, Na+/K+, ATPase, and cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels. Conclusions: These results suggest that AZA mitochondrial effects in hepatocytes derive from an imbalance of intracellular levels of K+ and, in particular, Cl− ions, as demonstrated by the selective reduction of toxin effects by CFTR chloride channel inhibition.


2017 ◽  
Vol 25 (8) ◽  
pp. 2351-2371 ◽  
Author(s):  
Humaira Zafar ◽  
Muhammad Hayat ◽  
Sumayya Saied ◽  
Momin Khan ◽  
Uzma Salar ◽  
...  

Planta Medica ◽  
2017 ◽  
Vol 83 (17) ◽  
pp. 1335-1341 ◽  
Author(s):  
Jin Kim ◽  
Woo Kim ◽  
Jung Hyun ◽  
Jong Lee ◽  
Jin Kwon ◽  
...  

AbstractHyperuricemia is a clinical condition characterized by an elevated level of serum uric acid and is a key risk factor for the development of gout and metabolic disorders. The existing urate-lowering therapies are often impractical for certain patient populations, providing a rationale to explore new agents with improved safety and efficacy. Here, we discovered that Salvia plebeia extract inhibited the enzyme activity of xanthine oxidase, which is a key enzyme generating uric acid in the liver. In an animal model of hyperuricemia, S. plebeia extract reduced serum urate to the levels observed in control animals. The urate-lowering effect of S. plebeia extract in vivo was supported by the identification of compounds that inhibit xanthine oxidase enzyme activity in vitro. Nepetin, scutellarein, and luteolin contributed significantly to S. plebeia bioactivity in vitro. These compounds showed the highest potency against xanthine oxidase with IC50 values of 2.35, 1.74, and 1.90 µM, respectively, and were present at moderate quantities. These observations serve as a basis for further elaboration of the S. plebeia extracts for the development of new therapeutics for hyperuricemia and related diseases.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
In-Soo Yoon ◽  
Dae-Hun Park ◽  
Min-Suk Bae ◽  
Deuk-Sil Oh ◽  
Nan-Hui Kwon ◽  
...  

Quercus acuta Thunb. (Fagaceae) (QA) is cultivated as a dietary and ornamental plant in China, Japan, South Korea, and Taiwan. It has been widely used as the main ingredient of acorn tofu, a traditional food in China and South Korea. The aim of this study was to determine in vitro and in vivo xanthine oxidase (XO) inhibitory and antihyperuricemic activities of an ethyl acetate extract of QA leaf (QALE) and identify its active phytochemicals using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography (LC) systems. The QALE was found to possess potent in vitro antioxidant and XO inhibitory activities. In vivo study using hyperuricemic mice induced with potassium oxonate demonstrated that the QALE could inhibit hepatic XO activity at a relatively low oral dose (50 mg/kg) and significantly alleviate hyperuricemia to a similar extent as allopurinol. Several active compounds including vitamin E known to possess XO inhibitory activity were identified from the QALE. To the best of our knowledge, this is the first study that reports the active constituents and antihyperuricemic effect of QA, suggesting that it is feasible to use QALE as a food therapy or alternative medicine for alleviating hyperuricemia and gout.


Author(s):  
Dian Ratih Laksmitawati ◽  
Rininta Firdaus ◽  
Mediana Astika Zein

Objectives: This study would like to investigate the in vitro antioxidant activity through 2,2-diphenyl-1-picrylhydrazyl assay and in vitro xanthine oxidase activity of the bulbs. This study performs in vivo assays to study the antihyperuricemic activity and antioxidant in the hyperuricemic rat through plasma malondialdehyde measurement. Method: The study was conducted by testing the fresh bulbs of bawang tiwai (Eleutherine palmifolia (L.) Merr. with chemical solvent of ethanol 70% to extract the bulbs. Allopurinol and Vitamin C were used as positive control for the antihyperuricemic assay and antioxidant assay, respectively. Other chemical substances were also used in this study. This study used chicken extract (Brands) 20 ml/kg/body weight to induce the level of uric acid in the blood serum, and potassium oxonate (Sigma 156124) to inhibit the uricase in rats. Results: The results show that the levels of uric acid were measured using spectrophotometer with dichloro-hydroxybenzen sulfonate (Biolabo) a as reagent. The ethanol extract of bawang tiwai (EBT) (E. palmifolia (L.) Merr) was potential to reduce uric acid level at 140, 280, and 560 mg/kg body weight, but possibly without inhibition against xanthine oxydase activity. Conclusion: All doses of EBT could inhibit lipid peroxidation in hyperuricemic condition caused by high purine diet in 14 days.


2016 ◽  
Vol 7 (10) ◽  
pp. 4239-4246 ◽  
Author(s):  
Jhih-Jia Jhang ◽  
Jia-Wei Ong ◽  
Chi-Cheng Lu ◽  
Chin-Lin Hsu ◽  
Jia-Hong Lin ◽  
...  

Uric acid is a metabolite obtained from purine by xanthine oxidase activity (XO) and high levels of serum uric acid leads to hyperuricemia and gout.


2019 ◽  
Vol 15 (5) ◽  
pp. 465-486 ◽  
Author(s):  
Haifang Chen ◽  
Yun Yao ◽  
Yuan Zhan ◽  
Hui Jian ◽  
Yan Li ◽  
...  

Background: Erding granule (EDG) widely used as an agent with the effect of heat-clearing, detoxifying, eliminating dampness, relieving jaundice and upper respiratory tract disease in clinical application, but the systematic chemical information and anti-hyperuricemia effect of EDG was still unclear. Methods: An ultra-high performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC/ESI-Q-TOF-MS/MS) method was utilized to rapidly identify the chemical constituents of EDG. The anti-hyperuricemia effect of EDG was evaluated based on the effect on xanthine oxidase inhibitory activity (in vitro) and lowering uric acid (in vivo). Results: 198 compounds were tentatively separated and identified or characterized within 30 min by UHPLC/ESI-Q-TOF MS/MS. These compounds were categorized as 22 coumarins, 38 flavones, 67 alkaloids, 36 organic acids, 16 sesquiterpenes, 14 lignans and 5 the others constituents. Meanwhile, EDG significantly decreases the serum urate level of hyperuricemic mice induced by potassium oxonate, while EDG did not significantly decrease the serum urate level of hyperuricemic mice induced by hypoxanthine and activity of xanthine oxidase in vitro. Conclusion: The method developed was rapid and sensitive to characterize the chemical constituents of EDG, and provide a systematic view of chemical information for EDG. Furthermore, we first discovered the anti-hyperuricemia effect of EDG and it would further provide the reference for clarifying the mechanism of EDG on lowering uric acid.


Scientifica ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Nour Elhouda Daoudi ◽  
Mohamed Bouhrim ◽  
Hayat Ouassou ◽  
Mohamed Bnouham

Background. The gout is a metabolic disease that is associated with a high level of uric acid in the blood. This disease is treated with some medications that aim to reduce serum urate levels. However, the use of various medicines leads to the appearance of some side effects, hence the importance of using other treatments based on natural resources. Objective. This study presents some medical treatments, their side effects, and some plants that are used for gout management in Morocco in the aim to valorize them. Methods. We have been consulting various English publications in PubMed, Web of Science, and ScienceDirect published between 1991 and 2019 using the following keywords “drugs,” “gout,” “Morocco,” “medicinal plants,” “in vitro,” and “in vivo” terms. Then, we have classified the medicines, according to their action mechanisms, and we have cited some species that were reported in Moroccan pharmacopeia as antigout. Results. Three methods of the gout medical management were cited in this work: xanthine oxidase inhibitors, uric acid excretion enhancer, and uricase recombinant. However, it was found that these treatments had various side effects. We have described 23 species, and some of them showed experimentally an antigout effect by blocking the “xanthine oxidase” enzyme. These plants belong to 11 families. Lamiaceae represents the most dominant family with six species followed by Asteraceae with two species. Colchicine isolated from Colchicum autumnale is the most known compound for its efficiency towards gout. Conclusion. This work summarized different treatments particularly medicinal plants that are used in Morocco to treat gout disease by blocking uric acid secretion. However, several studies are needed to valorize these antigout natural sources.


Sign in / Sign up

Export Citation Format

Share Document