scholarly journals An Experimental Study on the Creep Characteristics of Sandstone in the Interval of Different Critical Stresses

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Chao Yang ◽  
Xingchen Dong ◽  
Xuan Xu ◽  
Qiancheng Sun

Creep tests on brittle sandstone specimens were performed to investigate the time-dependent characteristics in the interval of different critical stresses. The results showed that failure will not occur when the loaded stress σ1 is less than the critical stress of dilation σcd, while all specimens were destroyed when σ1 is larger than σcd. In addition, the value of σcd was very close to the long-term strength obtained by the method of the isochronous stress-strain curve. Therefore, σcd can be regarded as the long-term strength of the sandstone specimens. When σ1 is larger than σcd, the time required for the failure of specimen tf decreases with the increase of σ1; the creep rate dε/dt increases with time t, and the specimen will be destroyed when it reaches a maximum value (dε/dt)max. Both relationships tf and σ1 and (dε/dt)max and σ1 can be described by the exponential function. Then, a nonlinear damage creep model considering the deformation damage and strength damage in the interval of different critical stresses was established, which can describe the whole creep process and predict the failure time of sandstone specimens.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Lin Liu ◽  
Weiya Xu

It is important to confirm the long-term strength of rock materials for the purpose of evaluating the long-term stability of rock engineering. In this study, a series of triaxial creep tests were conducted on granite gneiss under different pore pressures. Based on the test data, we proposed two new quantitative methods, tangent method and intersection method, to confirm the long-term strength of rock. Meanwhile, the isochronous stress-strain curve method was adopted to make sure of the accuracy and operability of the two new methods. It is concluded that the new methods are suitable for the study of the long-term strength of rock. The effect of pore pressure on the long-term strength of rock in triaxial creep tests is also discussed.


2007 ◽  
Vol 52 (7) ◽  
pp. 388-390
Author(s):  
A. M. Kovrizhnykh
Keyword(s):  

2019 ◽  
Vol 43 (2) ◽  
pp. 199-208 ◽  
Author(s):  
Cun-Gui Yu ◽  
Tong-Sheng Sun ◽  
Guang-Yuan Xiao

In this paper, the creep performance of a multi-barrel rocket launch canister under long-term stacking storage is studied. Based on the Bailey–Norton model, a creep model for the frame material of a launch canister was established. Constant stress tensile creep tests under different stress levels at room temperature were carried out on the frame materials of the launch canister and the creep model parameters were obtained by test data fitting. The three-dimensional finite element model of the launch canister was established in the ABAQUS software environment and the creep deformation of the launch canister after long-term stacking storage was studied. The results indicated that the bottom layer of the launch canister frame presented an extended residual deformation when the stacking storage solution with the original support pad was used. Therefore, a position adjustment program of the support pad was put forward. The residual deformation of the launch canister frame after long-term storage could be significantly reduced, thus the performance requirements for the launch canister are guaranteed.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3468 ◽  
Author(s):  
Junxiang Zhang ◽  
Bo Li ◽  
Conghui Zhang ◽  
Peng Li

The development of fractures, which determine the complexity of coal creep characteristics, is the main physical property of coal relative to other rocks. This study conducted a series of multistage creep tests to investigate the creep behavior of coal under different stress levels. A negative elastic modulus and a non-Newtonian component were introduced into the classical Nishihara model based on the theoretical analysis of the experimental results to propose a nonlinear viscoelastic–plastic creep model for describing the non-decay creep behavior of coal. The validity of the model was verified by experimental data. The results show that this improved model can preferably exhibit decelerating, steady state, and accelerating creep behavior during the non-decay creep process. The fitting accuracy of the improved model was significantly higher than that of the classical Nishihara model. Given that acceleration creep is a critical stage in predicting the instability and failure of coal, its successful description using this improved model is crucial for the prevention and control of coal dynamic disasters.


2011 ◽  
Vol 105-107 ◽  
pp. 832-836 ◽  
Author(s):  
Shu Ren Wang ◽  
Hui Hui Jia

Under low stress conditions, when the load exerting on the mined-out areas roof is less than the rock long-term strength, the rock roof will generate some creep deformation. In order to prevent the roof of the mined-out areas suddenly collapse, and to ensure the operator and construction equipment above the mined-out areas safety, it is an important security technical problem to reveal the creep characteristics of the shallow mined-out areas roof. Taking the mined-out areas of Antaibao Surface Mine as background, considering the rheological properties of rock roof, and assuming the roof was a rectangular thick plate, the creep characteristics of mined-out areas roof were analysed by applying the thick plate theory and Kelvin creep model. The regression equation of the roof deflection increment over time was given, and the creep characteristics of the shallow mined-out areas roof were revealed also.


2013 ◽  
Vol 639-640 ◽  
pp. 493-497
Author(s):  
Woo Tai Jung ◽  
Sung Yong Choi ◽  
Young Hwan Park

The hydraulic loading device commonly used for creep test necessitates continuous recharge of the hydraulic pressure with time and is accompanied by slight variation of the permanent load at each recharge. Therefore, accurate test results cannot be obtained for long-term creep tests requiring time-dependent behavioral analysis during more than 6 months. This study conducts creep test as part of the analysis of the long-term characteristics of fiber-reinforced lean concrete sub-base of pavement. The creep test is executed using the new load-amplifier device not a conventional loading device. Since the results of the preliminary verification test on the new creep test device show that constant permanent load is applied without significant variation, it can be expected that more accurate measurement of the creep will be possible in a long-term compared to the conventional hydraulic device. In addition, the creep test results of sub-base specimens reveal the occurrence of large instantaneous elastic strain, differently from the strain curve observed in ordinary concrete, as well as the occurrence of small creep strain leading to low creep coefficient.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Rongbin Hou ◽  
Yanke Shi ◽  
Leige Xu ◽  
Jinwei Fu ◽  
Kai Zhang

Long-term strength (LTS) of rock materials is important for the long-term stability analysis and the failure prediction of structures in rock engineering. Numerous studies have been carried out on the LTS for various kinds of rock; however, the effects of initial damage on the LTS and creep failure time of rock have not been conducted. In the present study, the creep experiment with controllable initial damage state of rock was designed. Then, the LTS of rock specimens with different initial damage was determined by four methods (i.e., the isochronous stress-strain curve method, the steady creep discriminated method, the volumetric strain inflexion point determined method, and the intersection of the steady creep rate method). The results show that, with the increase in the initial damage, the LTS of rock decreases and the relationship between the initial damage and the LTS of rock can be described as a linear function. Finally, an evaluation method for predicting the creep failure time of rock under a single stress level was proposed. In addition, the creep failure time of rock with different initial damage under different creep stress levels was obtained by the method. The results indicate that both the initial damage and the creep stress levels have a great influence on creep failure time, i.e., greater initial damage or creep stress leads to a shorter period for rock failure. Thus, for analyzing the long-term stability of rock mass structure, not only the influence of in situ stress but also the initial damage state of the surrounding rock should be considered.


2021 ◽  
Author(s):  
Lijie Chen ◽  
Jianbing Peng ◽  
Fei Xie ◽  
Yanqiu Leng ◽  
Penghui Ma ◽  
...  

Abstract It is of great significance to study the time-dependent mechanical properties of loess, as loess landslides are closely related to them. The purpose of this study is to investigate the effect of moisture content on instantaneous and time-dependent deformation, strength and failure behaviors of undisturbed loess specimens from Nangou in Yan'an City, Shanxi Province, China, via triaxial shearing tests and multi-loading triaxial creep tests under moisture contents of 5%, 10%, 17% and 22%. The results show that the time-dependent deformation of loess increase with the moisture content, while the time-dependent deformation rate decreases slowly. The soil deformation is divided into four stages based on the peak strain rate. Furthermore, the instantaneous and long-term strength of loess decrease with increasing moisture content, and the instantaneous strength decreases more than the long-term strength. The failure mode of undisturbed loess changes from shear failure to homogeneous failure with increasing moisture content; when the failure mode is shear failure, the thickness of the shear band that forms at the specimen surface over time is smaller than the corresponding thickness that forms instantaneously. Finally, the macroscopic morphology and microstructure of loess specimens were considered together to analyze the effect of moisture content on the instantaneous and long-term mechanical behavior of loess and to discuss the process of loess deformation to failure.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Lina Wen ◽  
Qiangong Cheng ◽  
Qiang Cheng ◽  
Xifeng Guo ◽  
Bin Zhang

Due to the limitations of geography and geology, cast concrete tunnel anchors were used to provide counterforces for Xingkang Suspension Bridge foundation at the left bank of Daduhe River. In this study, the in situ creep tests were conducted on two model tunnel anchors at a scale of 1:10 near the real working anchor site. Thus, the long-term deformation of the real working tunnel anchors installed at the bridge foundation could be determined from the creep test of model tunnel anchors. The creep tests were conducted under three different loads and lasted for 102.2 h, 167.5 h, and 189.4 h, respectively. The model anchor, the surrounding rock, and their interface were all monitored and measured during the creep testing. In addition, the numerical calculation, in which the Burger creep constitution was used for describing the surrounding rock and the Mohr–Coulomb criterion for describing the concrete anchor, was performed to further evaluate the long-term stability of the real working tunnel anchors. The numerical calculations are in good agreement with the laboratory testing results, and the creep deformations of the anchor and the surrounding rock have the same order of magnitude. The results show that the tunnel anchor and surrounding rock of Xingkang Bridge are in a stable creep state under the three different loads.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Hang Lin ◽  
Xing Zhang ◽  
Yixian Wang ◽  
Rui Yong ◽  
Xiang Fan ◽  
...  

Creep property is an important mechanical property of rocks. Given the complexity of rock masses, mechanical parameters change with time in the creep process. In this work, a nonlinear function for describing the time-dependent change of parameters was introduced and an improved variable-parameter nonlinear Nishihara shear creep model of rocks was established. By creating rock-like materials, the mechanical properties of rocks under the shear creep test condition were studied, and the deformation characteristics and long-term shear strength of rocks during creep were analyzed. The material parameters of the model were identified using the creep test results. Comparison of the model’s calculated values and experimental data indicated that the model can describe the creep characteristics of rocks well, thus proving the correctness and rationality of the improved model. During shear creep, the mechanical properties of rocks have an aging effect and show hardening characteristics under low shear stress. Furthermore, according to the fact that Gk of the nonlinear model can characterize the creep deformation resistance, a method to determine the long-term shear strength is proposed.


Sign in / Sign up

Export Citation Format

Share Document