scholarly journals Applications of Deep Learning on Topographic Images to Improve the Diagnosis for Dynamic Systems and Unconstrained Optimization

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Gharbi Alshammari ◽  
Abdulsattar Abdullah Hamad ◽  
Zeyad M. Abdullah ◽  
Abdulrhman M. Alshareef ◽  
Nawaf Alhebaishi ◽  
...  

Studies carried out by researchers show that data growth can be exploited in such a way that the use of deep learning algorithms allow predictions with a high level of precision based on the data, which is why the latest studies are focused on the use of convolutional neural networks as the optimal algorithm for image classification. The present research work has focused on making the diagnosis of a disease that affects the cornea called keratoconus through the use of deep learning algorithms to detect patterns that will later be used to carry out preventive detections. The algorithm used to perform the classifications has been convolutional neural networks as well as image preprocessing to remove noise that can limit neural network learning, resulting in more than 1900 classified images out of a total of >2000 images distributed between normal eyes and those with keratoconus, which is equivalent to 92%.

Author(s):  
Anthony Robins ◽  
◽  
Marcus Frean ◽  

In this paper, we explore the concept of sequential learning and the efficacy of global and local neural network learning algorithms on a sequential learning task. Pseudorehearsal, a method developed by Robins19) to solve the catastrophic forgetting problem which arises from the excessive plasticity of neural networks, is significantly more effective than other local learning algorithms for the sequential task. We further consider the concept of local learning and suggest that pseudorehearsal is so effective because it works directly at the level of the learned function, and not indirectly on the representation of the function within the network. We also briefly explore the effect of local learning on generalization within the task.


The need for offline handwritten character recognition is intense, yet difficult as the writing varies from person to person and also depends on various other factors connected to the attitude and mood of the person. However, we are able to achieve it by converting the handwritten document into digital form. It has been advanced with introducing convolutional neural networks and is further productive with pre-trained models which have the capacity of decreasing the training time and increasing accuracy of character recognition. Research in recognition of handwritten characters for Indian languages is less when compared to other languages like English, Latin, Chinese etc., mainly because it is a multilingual country. Recognition of Telugu and Hindi characters are more difficult as the script of these languages is mostly cursive and are with more diacritics. So the research work in this line is to have inclination towards accuracy in their recognition. Some research has already been started and is successful up to eighty percent in offline hand written character recognition of Telugu and Hindi. The proposed work focuses on increasing accuracy in less time in recognition of these selected languages and is able to reach the expectant values.


Children ◽  
2020 ◽  
Vol 7 (10) ◽  
pp. 182
Author(s):  
Harshini Sewani ◽  
Rasha Kashef

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by a lack of social communication and social interaction. Autism is a mental disorder investigated by social and computational intelligence scientists utilizing advanced technologies such as machine learning models to enhance clinicians’ ability to provide robust diagnosis and prognosis of autism. However, with dynamic changes in autism behaviour patterns, these models’ quality and accuracy have become a great challenge for clinical practitioners. We applied a deep neural network learning on a large brain image dataset obtained from ABIDE (autism brain imaging data exchange) to provide an efficient diagnosis of ASD, especially for children. Our deep learning model combines unsupervised neural network learning, an autoencoder, and supervised deep learning using convolutional neural networks. Our proposed algorithm outperforms individual-based classifiers measured by various validations and assessment measures. Experimental results indicate that the autoencoder combined with the convolution neural networks provides the best performance by achieving 84.05% accuracy and Area under the Curve (AUC) value of 0.78.


2020 ◽  
Vol 8 (6) ◽  
pp. 4781-4784

Dermatological diseases are found to induce a serious impact on the health of millions of people as everyone is affected by almost all types of skin disorders every year. Since the human analysis of such diseases takes some time and effort, and current methods are only used to analyse singular types of skin diseases, there is a need for a more high-level computer-aided expertise in the analysis and diagnosis of multi-type skin diseases. This paper proposes an approach to use computer-aided techniques in deep learning neural networks such as Convolutional neural networks (CNN) and Residual Neural Networks (ResNet) to predict skin diseases real-time and thus provides more accuracy than other neural networks.


Social media sites such as Twitter, Facebook, Tumblretc, are vastly popular among the general population. People post updates, tweets etc., and almost 75% of the times, these posts are a combination of emotions. The idea is to analyze suicidal-depression tendencies in adults with traumatizing experiences or socio-economic difficulties. This makes the overall analysis of sentiments especially extremely complex, which we aim to resolve here in this project by breaking down all the sentences into individual words, and along with emoticons and hashtags, converting each one of them into tokens, and then applying deep learning algorithms on the same, to accurately determine the sentiments of given messages. The objective of the project undertaken is to determine the suicidal- sentiment of various depressed individuals, and how likely is it that they are inclined to commit suicide on the basis of their tweets.


2018 ◽  
Vol 10 (10) ◽  
pp. 1513 ◽  
Author(s):  
Julio Duarte-Carvajalino ◽  
Diego Alzate ◽  
Andrés Ramirez ◽  
Juan Santa-Sepulveda ◽  
Alexandra Fajardo-Rojas ◽  
...  

This work presents quantitative prediction of severity of the disease caused by Phytophthora infestans in potato crops using machine learning algorithms such as multilayer perceptron, deep learning convolutional neural networks, support vector regression, and random forests. The machine learning algorithms are trained using datasets extracted from multispectral data captured at the canopy level with an unmanned aerial vehicle, carrying an inexpensive digital camera. The results indicate that deep learning convolutional neural networks, random forests and multilayer perceptron using band differences can predict the level of Phytophthora infestans affectation on potato crops with acceptable accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1139
Author(s):  
Khadija Kanwal ◽  
Khawaja Tehseen Ahmad ◽  
Rashid Khan ◽  
Naji Alhusaini ◽  
Li Jing

Convolutional neural networks (CNN) are relational with grid-structures and spatial dependencies for two-dimensional images to exploit location adjacencies, color values, and hidden patterns. Convolutional neural networks use sparse connections at high-level sensitivity with layered connection complying indiscriminative disciplines with local spatial mapping footprints. This fact varies with architectural dependencies, insight inputs, number and types of layers and its fusion with derived signatures. This research focuses this gap by incorporating GoogLeNet, VGG-19, and ResNet-50 architectures with maximum response based Eigenvalues textured and convolutional Laplacian scaled object features with mapped colored channels to obtain the highest image retrieval rates over millions of images from versatile semantic groups and benchmarks. Time and computation efficient formulation of the presented model is a step forward in deep learning fusion and smart signature capsulation for innovative descriptor creation. Remarkable results on challenging benchmarks are presented with a thorough contextualization to provide insight CNN effects with anchor bindings. The presented method is tested on well-known datasets including ALOT (250), Corel-1000, Cifar-10, Corel-10000, Cifar-100, Oxford Buildings, FTVL Tropical Fruits, 17-Flowers, Fashion (15), Caltech-256, and reported outstanding performance. The presented work is compared with state-of-the-art methods and experimented over tiny, large, complex, overlay, texture, color, object, shape, mimicked, plain and occupied background, multiple objected foreground images, and marked significant accuracies.


2021 ◽  
Vol 13 (1) ◽  
pp. 49-57
Author(s):  
Brahim Jabir ◽  
Noureddine Falih ◽  
Asmaa Sarih ◽  
Adil Tannouche

Researchers in precision agriculture regularly use deep learning that will help growers and farmers control and monitor crops during the growing season; these tools help to extract meaningful information from large-scale aerial images received from the field using several techniques in order to create a strategic analytics for making a decision. The information result of the operation could be exploited for many reasons, such as sub-plot specific weed control. Our focus in this paper is on weed identification and control in sugar beet fields, particularly the creation and optimization of a Convolutional Neural Networks model and train it according to our data set to predict and identify the most popular weed strains in the region of Beni Mellal, Morocco. All that could help select herbicides that work on the identified weeds, we explore the way of transfer learning approach to design the networks, and the famous library Tensorflow for deep learning models, and Keras which is a high-level API built on Tensorflow.


2020 ◽  
Author(s):  
Pedro V. A. de Freitas ◽  
Antonio J. G. Busson ◽  
Álan L. V. Guedes ◽  
Sérgio Colcher

A large number of videos are uploaded on educational platforms every minute. Those platforms are responsible for any sensitive media uploaded by their users. An automated detection system to identify pornographic content could assist human workers by pre-selecting suspicious videos. In this paper, we propose a multimodal approach to adult content detection. We use two Deep Convolutional Neural Networks to extract high-level features from both image and audio sources of a video. Then, we concatenate those features and evaluate the performance of classifiers on a set of mixed educational and pornographic videos. We achieve an F1-score of 95.67% on the educational and adult videos set and an F1-score of 94% on our test subset for the pornographic class.


Landslides can easily be tragic to human life and property. Increase in the rate of human settlement in the mountains has resulted in safety concerns. Landslides have caused economic loss between 1-2% of the GDP in many developing countries. In this study, we discuss a deep learning approach to detect landslides. Convolutional Neural Networks are used for feature extraction for our proposed model. As there was no source of an exact and precise data set for feature extraction, therefore, a new data set was built for testing the model. We have tested and compared this work with our proposed model and with other machine-learning algorithms such as Logistic Regression, Random Forest, AdaBoost, K-Nearest Neighbors and Support Vector Machine. Our proposed deep learning model produces a classification accuracy of 96.90% outperforming the classical machine-learning algorithms.


Sign in / Sign up

Export Citation Format

Share Document