scholarly journals First-Principles Investigation of Structural, Electronic, and Room Temperature Ferromagnetism in Si-Doped Monolayer BN

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ahemedin Abedea Ajaybu ◽  
Sintayehu Mekonnen Hailemariam

We performed spin-polarized density functional theory (DFT) to investigate the structural, electronic, and magnetic properties of silicon- (Si-) doped monolayer boron nitride (BN). The present study revealed that structural parameters like bond length, bond angle, and lattice parameters increase as Si-doped in the B site of monolayer BN. However, the bandgap of monolayer BN is reduced in the presence of the Si dopant. Moreover, the obtained magnetic moment and analysis of the total density of states (TDOS) show that Si-doped monolayer BN displays ferromagnetism. The calculated ferromagnetic transition temperature (Tc) value for Si concentration of 12.5% is 476 K which exceeds room temperature. The findings are avenues to enhance the application of monolayer BN for spintronics.

2014 ◽  
Vol 70 (a1) ◽  
pp. C1806-C1806
Author(s):  
Samir Bentata ◽  
Bouabdellah Bouadjemi ◽  
Tayeb Lantri ◽  
Wissem Benstaali

We investigate the structural, electronic and magnetic properties of the orthorhombic Perovskite oxyde NdMnO3 through density-functional-theory (DFT) calculations using both generalized gradient approximation GGA+U, where U is on-site Coulomb interaction correction. The electronic band structure, the partial and total density of states (DOS) and the magnetic moment are determined. The results show a half-metallic ferromagnetic ground state for the orthorhombic NdMnO3.


2014 ◽  
Vol 28 (14) ◽  
pp. 1450070 ◽  
Author(s):  
Z. W. Niu ◽  
B. Zhu ◽  
Y. Cheng ◽  
R. N. Song ◽  
G. F. Ji

The elastic and electronic properties of cubic structure CeO 2 under pressure are investigated in the frame of density functional theory (DFT). By using the local-density approximation (LDA) plus U( LDA +U) method with U = 6 eV, the calculated lattice parameters, bulk modulus and elastic properties of the cubic CeO 2 at 0 GPa and 0 K are in good agreement with the available experimental data. The pressure dependences of lattice parameters, bulk and shear modulus, Debye temperature, Young's moduli, Poisson's ratio and the compressional and shear wave velocities of the cubic CeO 2 are obtained successfully. In addition, the total density of states (TDOS) and the band gaps of the cubic CeO 2 under pressures are also investigated. By comparing the results of LDA and LDA+U, both the conventional LDA and the LDA+U methods can be used to describe the structure of the cubic CeO 2 due to the electronic localization of 4f-electron in Ce which is not so strong. However, the LDA+U approach can obtain a proper shape of the density of electronic states that agrees well with the measured values.


2012 ◽  
Vol 26 (20) ◽  
pp. 1250132
Author(s):  
G. Y. YAO ◽  
G. H. FAN ◽  
J. H. MA ◽  
S. W. ZHENG ◽  
J. CHEN ◽  
...  

Using the first-principles method based on the density functional theory, we have calculated electronic structure of zinc blende AlN doped with 6.25% of V. The V dopants are found spin polarized and the calculated band structures suggest a 100% polarization of the conduction carriers. The ferromagnetic ground state in V-doped AlN can be explained in terms of double-exchange mechanism, and a Curie temperature above room temperature can be expected. These results suggest that the V-doped AlN may present a promising dilute magnetic semiconductor and find applications in the field of spintronics.


2021 ◽  
Vol 9 (2) ◽  
pp. 71-75
Author(s):  
Akram H. Taha

Density functional theory (DFT) coupled with ) method are carried out to calculate the electronic structures of AgX (X; Br, Cl, and F). The effect of hybridizing between 4d orbital of Ag element and the p orbitals of the X in the valence band plays a very important role in the total density of states configuration. The electronic structure has been studied and all results were compared with the experimental and theoretical values. The importance of this work is that there is insufficient studies of silver halides corresponding the great importance of these compounds. Almost all the results were consistent with the previous studies mentioned here. We found the band gap of AgX to be 2.343 eV, 2.553 eV, and 1.677 eV for AgBr, AgCl, and AgF respectively which are in good agreement with the experimental results.      


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
A. Z. AlZahrani

First-principles total energy calculations of the structural and electronic properties of Ce-doped fullerene have been performed within the framework of the density functional theory at the generalized gradient approximation level. Among various locations, Ce atom was found to engage with the six-fold carbon ring. The total energy is found to significantly change as the Ce atom being shifted from the center of the cage toward the edge close to the six-membered ring where the total energy reaches its local minimum. Moreover, repulsive interaction between Ce atom and the cage components turns as the adatom directly interacts with the six C atoms of the ring. The lowest-energy CeC60 geometry is found to have a binding energy of approximately 5.34 eV, suggesting strong interaction of the dopant with the cage members. Furthermore, fundamental key structural parameters and the total density of states of the optimized structure have been determined and compared with the available data.


2020 ◽  
Vol 66 (5 Sept-Oct) ◽  
pp. 604
Author(s):  
M. Berber ◽  
N. Bouzouira ◽  
H. Abid ◽  
A. Boudali ◽  
H. Moujri

In this study, we have investigated the structural, electronic, and magnetic properties of the Rb2NaVF6 compound. We have performed our calculations by the use of first-principle methods based on spin-polarized density functional theory, where the electronic exchange-correlation potential is treated by the generalized gradient approximation GGA- PBEsol coupled with the improved TB-mBJ approach. The calculated structural parameters of Rb2NaVF6 are in good agreement with the available experimental data. Rb2NaVF6 exhibits a half-metallic ferromagnetic feature with a spin polarization of 100 % at the Fermi level and a direct large half-metallic gap of 3.582 eV. The total magnetic moments are 2 μB. This material is half-metallic ferromagnets, and it can be potential candidates for spintronics applications at a higher temperature.


2020 ◽  
Vol 5 (3) ◽  
pp. 48
Author(s):  
Samir F. Matar

From density functional theory investigations helped with crystal chemistry rationale, single-atom C, embedded in layered hexagonal CC’n (n = 6, 12 and 18) networks, is stable in a magnetic state with M(C) = 2 μB. The examined compositions, all inscribed within the P6/mmm space group are characterized as increasingly cohesive with n, figuring mono-, bi- and tri-layered honeycomb-like C’6 networks respectively. The spin projected total density of states shows a closely half-metallic behavior with a gap at minority spins (↓) and metallic majority spins (↑). Such results together with the large C-C intersite separation and the integer 2 μB magnetization, let us propose an intra-band mechanism of magnetic moment onset on carbon 2p states. Support is provided from complementary calculations assuming a C2C’12 structure with planar 2C with d(C-C) = 2.46 Å resulting into a lowering of the magnetization down to the 0.985 μB/C atom and a ferromagnetic order arising from interband spin polarization on C where one nonbonding spin polarizes whereas the other is involved with the bonding with the other carbon. Illustration of proofs is provided with the magnetic charge density projected onto the different atoms, showing its prevalence around C, contrary to the C’n (C’6 layers), as well as electron localization function ELF.


Author(s):  
Sandhya Chintalapati ◽  
Yuan Ping Feng

The magnetic property of Si-doped AlN with Al-vacancy is studied using first principles calculations based on spin polarized density functional theory. The Si dopant alone does not introduce the magnetic moment in AlN. However, the doping of Si in AlN reduces the formation energy caused by Al-vacancy, and stabilizes the spin polarized state. The magnetic moments are mainly localized on N atoms surrounding the defect. The strong ferromagnetic state is obtained in AlN due to the combined role of Al-vacancy and Si-dopant.


Sign in / Sign up

Export Citation Format

Share Document