scholarly journals A Review of Intermediate Pyrolysis as a Technology of Biomass Conversion for Coproduction of Biooil and Adsorption Biochar

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Deodatus Kazawadi ◽  
Justin Ntalikwa ◽  
Godlisten Kombe

The agenda to utilize and efficiently convert biomass has been raised to alleviate environmental problems and pressure on the reliance on fossil fuel. Intermediate pyrolysis has the ability to treat different biomasses and coproduction of biooil and adsorption biochar. This review article aims to evaluate the appropriateness of intermediate pyrolysis for the coproduction of biooil and adsorption biochar. It was observed that coproduced biooil is of high quality, stable, and miscible that can be used directly to existing engines or be easily blended. The biochar coproduced is good for adsorption but is not stable for microbial attack and hence unsuitable in soil treatment but for hydrometallurgy. Since the process is capable of treating waste biomass, it is an opportunity for further investigations in areas where wastes are plenty and less utilized. To increase the effectiveness of this technology for coproduction, optimizing parameters, design of efficient reactors, and use of catalyst must be worked upon.

Fuel ◽  
2021 ◽  
Vol 296 ◽  
pp. 120611
Author(s):  
Agata Mlonka-Mędrala ◽  
Panagiotis Evangelopoulos ◽  
Małgorzata Sieradzka ◽  
Monika Zajemska ◽  
Aneta Magdziarz

Author(s):  
Roger A. Sheldon

This paper is based on a lecture presented to the Royal Society in London on 24 June 2019. Two of the grand societal and technological challenges of the twenty-first century are the ‘greening' of chemicals manufacture and the ongoing transition to a sustainable, carbon neutral economy based on renewable biomass as the raw material, a so-called bio-based economy. These challenges are motivated by the need to eliminate environmental degradation and mitigate climate change. In a bio-based economy, ideally waste biomass, particularly agricultural and forestry residues and food supply chain waste, are converted to liquid fuels, commodity chemicals and biopolymers using clean, catalytic processes. Biocatalysis has the right credentials to achieve this goal. Enzymes are biocompatible, biodegradable and essentially non-hazardous. Additionally, they are derived from inexpensive renewable resources which are readily available and not subject to the large price fluctuations which undermine the long-term commercial viability of scarce precious metal catalysts. Thanks to spectacular advances in molecular biology the landscape of biocatalysis has dramatically changed in the last two decades. Developments in (meta)genomics in combination with ‘big data’ analysis have revolutionized new enzyme discovery and developments in protein engineering by directed evolution have enabled dramatic improvements in their performance. These developments have their confluence in the bio-based circular economy. This article is part of a discussion meeting issue ‘Science to enable the circular economy'.


2021 ◽  
pp. 1-7
Author(s):  
Natalie A. Chan ◽  
Zhisong Zhang ◽  
Guoxing Yin ◽  
Zhimeng Li ◽  
Roger C. Ho

SUMMARY Although hypnosis has played a part in psychotherapy for a long time, it is not yet seen as an evidence-based therapy and is absent from many practice guidelines when it comes to the treatment of psychiatric disorders. At present, the applications and methods of hypnotherapy are poorly understood and other methods of psychotherapy tend to be favoured. This review article aims to introduce the role of hypnotherapy and its application for certain common psychiatric presentations, as well as examine its efficacy by summarising recent evidence from high-quality outcome studies and meta-analyses.


2021 ◽  
Vol 25 (2) ◽  
pp. 48-53
Author(s):  
B.P. Yur’ev ◽  
V.A. Dudko

A technology of processing chalk from the Lebedinskoye deposit into high quality lime by roasting in a rotary kiln is proposed. A procedure has been developed for the thermodynamic calculation of the specific heat of decomposition of carbonates contained in chalk. The material and heat balances of the operating rotary kiln have been compiled. All the main parameters of its operation and the optimal fuel consumption for chalk processing have been determined.


2018 ◽  
Vol 10 (12) ◽  
pp. 4443 ◽  
Author(s):  
Anna Brunerová ◽  
Miroslav Müller ◽  
Vladimír Šleger ◽  
Himsar Ambarita ◽  
Petr Valášek

The oil palm (Elaeis guineensis Jacq.) represents Indonesian major agriculture crop, nevertheless, its cultivation and processing results in an excessive amount of waste biomass, namely, empty fruit bunches (EFB), which is not always properly processed or reused. Therefore, the present investigation was performed to attract wide public interest in proper waste management and reuse of waste biomass. The suitability of such waste biomass for bio-pellet fuel production within its ecological EFB reuse was the subject of investigation. Its fuel parameters, mechanical quality and microscopic analysis represented the set of experimental testing performed within the target purpose. Satisfactory result values were stated within oil palm EFB fuel parameters, namely, moisture content Mc—7.07%, ash content Ac—9.41% and energy potential NCV—15.06 MJ∙kg−1. Mechanical analysis of the produced bio-pellet fuel proved outstanding results: Volume density ρ—1440.01 kg∙m−3 and mechanical durability DU—97.4% and 99.4% (according to ÖNORM M 7135 (2003) and ISO 17831-1 (2015)). Furthermore, results of compressive strength σ proved the requested high level; in simple pressure σp—10.83 MPa and in cleft σc—60.46 N·mm−1. Stereoscopic microscope measurements proved a prevalent proportion of fiber >97% within the feedstock content, and scanning electron microscopy (SEM) of bio-pellet samples diagnosed cracks purely on the outer surface, not within their internal structures, which indicated high quality compacted products. In conclusion, the overall evaluation indicates the production of environmental-friendly high quality bio-pellet fuel, thus, proving the suitability of oil palm EFB for the production of bio-pellet fuel.


RSC Advances ◽  
2020 ◽  
Vol 10 (68) ◽  
pp. 41625-41679
Author(s):  
Bishwajit Changmai ◽  
Chhangte Vanlalveni ◽  
Avinash Prabhakar Ingle ◽  
Rahul Bhagat ◽  
Lalthazuala Rokhum

An ever-increasing energy demand and environmental problems associated with exhaustible fossil fuels have led to the search for an alternative energy. In this context, biodiesel has attracted attention worldwide as an alternative to fossil fuel.


Author(s):  
José Soares Ferreira Neto

In general, European and North American countries, as well as Australia and New Zealand, have already eradicated or reached good levels of control of brucellosis and tuberculosis in cattle. In the rest of the world, however, the epidemiological situation of these two diseases is frequently poorly understood. In this review article, quantified data on these diseases in the South American countries are presented. Initially, the aspects that led the continent to host 25% of the world cattle population are presented, in addition to the aspects that placed the continent at a prominent position in the international meat market. Subsequently the continent was divided into three country groups, considering the size of the cattle population and how well the epidemiological situation of brucellosis and tuberculosis in cattle is quantified. It is argued that countries that do not generate high-quality quantitative epidemiological data on these diseases have serious limitations in outlining and managing control or eradication strategies. Thus, for successful outcomes, at least methodologies to estimate the prevalence of infected herds should be employed.


2018 ◽  
Vol 22 ◽  
pp. 672-686 ◽  
Author(s):  
C.R. Cunningham ◽  
J.M. Flynn ◽  
A. Shokrani ◽  
V. Dhokia ◽  
S.T. Newman

2020 ◽  
Vol 8 (50) ◽  
pp. 18420-18432
Author(s):  
João Santos ◽  
Hessam Jahangiri ◽  
Muhammad Asif Bashir ◽  
Andreas Hornung ◽  
Miloud Ouadi

2020 ◽  
Vol 849 ◽  
pp. 40-46
Author(s):  
Denny Irawati ◽  
David Usman ◽  
Naresvara Nircela Pradipta

In Indonesia, Casuarina montana usually planted as a road shading tree or in the home garden. This tree will be pruned periodically to reduce the amount of the canopy and maintain the beauty of its shape. Pruning biomass usually consists of the tip of the stem, branches, twigs, and leaves. The biomass has potency for energy or chemicals sources. This study aims to know about energy potential of various types of C. montana biomass and charcoal properties in different carbonization temperature. Six types of biomass from pruning waste of C. montana were used as samples. Branch has high potency as α-cellulose source, while bark including twig bark, branch bark, or stem bark have high potency as lignin source. When it is used as direct fuel (firewood), all biomass of C. montana possess quite high calorific value. When it is converted to be charcoal, temperature of 300°C is good for carbonizing the biomass twig, twig bark, branch bark, and stem bark, while biomass branch and stem need temperature of 400°C.


Sign in / Sign up

Export Citation Format

Share Document