scholarly journals Hierarchical Attention-Based Multimodal Fusion Network for Video Emotion Recognition

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiaodong Liu ◽  
Songyang Li ◽  
Miao Wang

The context, such as scenes and objects, plays an important role in video emotion recognition. The emotion recognition accuracy can be further improved when the context information is incorporated. Although previous research has considered the context information, the emotional clues contained in different images may be different, which is often ignored. To address the problem of emotion difference between different modes and different images, this paper proposes a hierarchical attention-based multimodal fusion network for video emotion recognition, which consists of a multimodal feature extraction module and a multimodal feature fusion module. The multimodal feature extraction module has three subnetworks used to extract features of facial, scene, and global images. Each subnetwork consists of two branches, where the first branch extracts the features of different modes, and the other branch generates the emotion score for each image. Features and emotion scores of all images in a modal are aggregated to generate the emotion feature of the modal. The other module takes multimodal features as input and generates the emotion score for each modal. Finally, features and emotion scores of multiple modes are aggregated, and the final emotion representation of the video will be produced. Experimental results show that our proposed method is effective on the emotion recognition dataset.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xiaodong Liu ◽  
Miao Wang

Recognition of human emotion from facial expression is affected by distortions of pictorial quality and facial pose, which is often ignored by traditional video emotion recognition methods. On the other hand, context information can also provide different degrees of extra clues, which can further improve the recognition accuracy. In this paper, we first build a video dataset with seven categories of human emotion, named human emotion in the video (HEIV). With the HEIV dataset, we trained a context-aware attention network (CAAN) to recognize human emotion. The network consists of two subnetworks to process both face and context information. Features from facial expression and context clues are fused to represent the emotion of video frames, which will be then passed through an attention network and generate emotion scores. Then, the emotion features of all frames will be aggregated according to their emotional score. Experimental results show that our proposed method is effective on HEIV dataset.


Author(s):  
Huimin Lu ◽  
Rui Yang ◽  
Zhenrong Deng ◽  
Yonglin Zhang ◽  
Guangwei Gao ◽  
...  

Chinese image description generation tasks usually have some challenges, such as single-feature extraction, lack of global information, and lack of detailed description of the image content. To address these limitations, we propose a fuzzy attention-based DenseNet-BiLSTM Chinese image captioning method in this article. In the proposed method, we first improve the densely connected network to extract features of the image at different scales and to enhance the model’s ability to capture the weak features. At the same time, a bidirectional LSTM is used as the decoder to enhance the use of context information. The introduction of an improved fuzzy attention mechanism effectively improves the problem of correspondence between image features and contextual information. We conduct experiments on the AI Challenger dataset to evaluate the performance of the model. The results show that compared with other models, our proposed model achieves higher scores in objective quantitative evaluation indicators, including BLEU , BLEU , METEOR, ROUGEl, and CIDEr. The generated description sentence can accurately express the image content.


2021 ◽  
Vol 11 (3) ◽  
pp. 1064
Author(s):  
Jenq-Haur Wang ◽  
Yen-Tsang Wu ◽  
Long Wang

In social networks, users can easily share information and express their opinions. Given the huge amount of data posted by many users, it is difficult to search for relevant information. In addition to individual posts, it would be useful if we can recommend groups of people with similar interests. Past studies on user preference learning focused on single-modal features such as review contents or demographic information of users. However, such information is usually not easy to obtain in most social media without explicit user feedback. In this paper, we propose a multimodal feature fusion approach to implicit user preference prediction which combines text and image features from user posts for recommending similar users in social media. First, we use the convolutional neural network (CNN) and TextCNN models to extract image and text features, respectively. Then, these features are combined using early and late fusion methods as a representation of user preferences. Lastly, a list of users with the most similar preferences are recommended. The experimental results on real-world Instagram data show that the best performance can be achieved when we apply late fusion of individual classification results for images and texts, with the best average top-k accuracy of 0.491. This validates the effectiveness of utilizing deep learning methods for fusing multimodal features to represent social user preferences. Further investigation is needed to verify the performance in different types of social media.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Chao Tang ◽  
Huosheng Hu ◽  
Wenjian Wang ◽  
Wei Li ◽  
Hua Peng ◽  
...  

The representation and selection of action features directly affect the recognition effect of human action recognition methods. Single feature is often affected by human appearance, environment, camera settings, and other factors. Aiming at the problem that the existing multimodal feature fusion methods cannot effectively measure the contribution of different features, this paper proposed a human action recognition method based on RGB-D image features, which makes full use of the multimodal information provided by RGB-D sensors to extract effective human action features. In this paper, three kinds of human action features with different modal information are proposed: RGB-HOG feature based on RGB image information, which has good geometric scale invariance; D-STIP feature based on depth image, which maintains the dynamic characteristics of human motion and has local invariance; and S-JRPF feature-based skeleton information, which has good ability to describe motion space structure. At the same time, multiple K-nearest neighbor classifiers with better generalization ability are used to integrate decision-making classification. The experimental results show that the algorithm achieves ideal recognition results on the public G3D and CAD60 datasets.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1606
Author(s):  
Daniela Onita ◽  
Adriana Birlutiu ◽  
Liviu P. Dinu

Images and text represent types of content that are used together for conveying a message. The process of mapping images to text can provide very useful information and can be included in many applications from the medical domain, applications for blind people, social networking, etc. In this paper, we investigate an approach for mapping images to text using a Kernel Ridge Regression model. We considered two types of features: simple RGB pixel-value features and image features extracted with deep-learning approaches. We investigated several neural network architectures for image feature extraction: VGG16, Inception V3, ResNet50, Xception. The experimental evaluation was performed on three data sets from different domains. The texts associated with images represent objective descriptions for two of the three data sets and subjective descriptions for the other data set. The experimental results show that the more complex deep-learning approaches that were used for feature extraction perform better than simple RGB pixel-value approaches. Moreover, the ResNet50 network architecture performs best in comparison to the other three deep network architectures considered for extracting image features. The model error obtained using the ResNet50 network is less by approx. 0.30 than other neural network architectures. We extracted natural language descriptors of images and we made a comparison between original and generated descriptive words. Furthermore, we investigated if there is a difference in performance between the type of text associated with the images: subjective or objective. The proposed model generated more similar descriptions to the original ones for the data set containing objective descriptions whose vocabulary is simpler, bigger and clearer.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bahar Hatipoglu Yilmaz ◽  
Cemal Kose

Abstract Emotion is one of the most complex and difficult expression to be predicted. Nowadays, many recognition systems that use classification methods have focused on different types of emotion recognition problems. In this paper, we aimed to propose a multimodal fusion method between electroencephalography (EEG) and electrooculography (EOG) signals for emotion recognition. Therefore, before the feature extraction stage, we applied different angle-amplitude transformations to EEG–EOG signals. These transformations take arbitrary time domain signals and convert them two-dimensional images named as Angle-Amplitude Graph (AAG). Then, we extracted image-based features using a scale invariant feature transform method, fused these features originates basically from EEG–EOG and lastly classified with support vector machines. To verify the validity of these proposed methods, we performed experiments on the multimodal DEAP dataset which is a benchmark dataset widely used for emotion analysis with physiological signals. In the experiments, we applied the proposed emotion recognition procedures on the arousal-valence dimensions. We achieved (91.53%) accuracy for the arousal space and (90.31%) for the valence space after fusion. Experimental results showed that the combination of AAG image features belonging to EEG–EOG signals in the baseline angle amplitude transformation approaches enhanced the classification performance on the DEAP dataset.


2021 ◽  
Vol 25 ◽  
pp. 233121652110453
Author(s):  
Minke J. de Boer ◽  
Tim Jürgens ◽  
Deniz Başkent ◽  
Frans W. Cornelissen

Since emotion recognition involves integration of the visual and auditory signals, it is likely that sensory impairments worsen emotion recognition. In emotion recognition, young adults can compensate for unimodal sensory degradations if the other modality is intact. However, most sensory impairments occur in the elderly population and it is unknown whether older adults are similarly capable of compensating for signal degradations. As a step towards studying potential effects of real sensory impairments, this study examined how degraded signals affect emotion recognition in older adults with normal hearing and vision. The degradations were designed to approximate some aspects of sensory impairments. Besides emotion recognition accuracy, we recorded eye movements to capture perceptual strategies for emotion recognition. Overall, older adults were as good as younger adults at integrating auditory and visual information and at compensating for degraded signals. However, accuracy was lower overall for older adults, indicating that aging leads to a general decrease in emotion recognition. In addition to decreased accuracy, older adults showed smaller adaptations of perceptual strategies in response to video degradations. Concluding, this study showed that emotion recognition declines with age, but that integration and compensation abilities are retained. In addition, we speculate that the reduced ability of older adults to adapt their perceptual strategies may be related to the increased time it takes them to direct their attention to scene aspects that are relatively far away from fixation.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Rabab A. Rasool

The design of a robust human identification system is in high demand in most modern applications such as internet banking and security, where the multifeature biometric system, also called feature fusion biometric system, is one of the common solutions that increases the system reliability and improves recognition accuracy. This paper implements a comprehensive comparison between two fusion methods, named the feature-level fusion and score-level fusion, to determine which method highly improves the overall system performance. The comparison takes into consideration the image quality for the six combination datasets as well as the type of the applied feature extraction method. The four feature extraction methods, local binary pattern (LBP), gray-level co-occurrence matrix (GLCM), principle component analysis (PCA), and Fourier descriptors (FDs), are applied separately to generate the face-iris machine vector dataset. The experimental results highlighted that the recognition accuracy has been significantly improved when the texture descriptor method, such as LBP, or the statistical method, such as PCA, is utilized with the score-level rather than feature-level fusion for all combination datasets. The maximum recognition accuracy is obtained at 97.53% with LBP and score-level fusion where the Euclidean distance (ED) is considered to measure the maximum accuracy rate at the minimum equal error rate (EER) value.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yifeng Zhao ◽  
Deyun Chen

Due to the complexity of human emotions, there are some similarities between different emotion features. The existing emotion recognition method has the problems of difficulty of character extraction and low accuracy, so the bidirectional LSTM and attention mechanism based on the expression EEG multimodal emotion recognition method are proposed. Firstly, facial expression features are extracted based on the bilinear convolution network (BCN), and EEG signals are transformed into three groups of frequency band image sequences, and BCN is used to fuse the image features to obtain the multimodal emotion features of expression EEG. Then, through the LSTM with the attention mechanism, important data is extracted in the process of timing modeling, which effectively avoids the randomness or blindness of sampling methods. Finally, a feature fusion network with a three-layer bidirectional LSTM structure is designed to fuse the expression and EEG features, which is helpful to improve the accuracy of emotion recognition. On the MAHNOB-HCI and DEAP datasets, the proposed method is tested based on the MATLAB simulation platform. Experimental results show that the attention mechanism can enhance the visual effect of the image, and compared with other methods, the proposed method can extract emotion features from expressions and EEG signals more effectively, and the accuracy of emotion recognition is higher.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Zou Cairong ◽  
Zhang Xinran ◽  
Zha Cheng ◽  
Zhao Li

The feature fusion from separate source is the current technical difficulties of cross-corpus speech emotion recognition. The purpose of this paper is to, based on Deep Belief Nets (DBN) in Deep Learning, use the emotional information hiding in speech spectrum diagram (spectrogram) as image features and then implement feature fusion with the traditional emotion features. First, based on the spectrogram analysis by STB/Itti model, the new spectrogram features are extracted from the color, the brightness, and the orientation, respectively; then using two alternative DBN models they fuse the traditional and the spectrogram features, which increase the scale of the feature subset and the characterization ability of emotion. Through the experiment on ABC database and Chinese corpora, the new feature subset compared with traditional speech emotion features, the recognition result on cross-corpus, distinctly advances by 8.8%. The method proposed provides a new idea for feature fusion of emotion recognition.


Sign in / Sign up

Export Citation Format

Share Document