scholarly journals Understanding Impedance Response Characteristics of a Piezoelectric-Based Smart Interface Subjected to Functional Degradations

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Ba-Phu Nguyen ◽  
Quang Hung Tran ◽  
Thanh-Truong Nguyen ◽  
Ananta Man Singh Pradhan ◽  
Thanh-Canh Huynh

The functionality of piezoelectric devices is of significant importance in the electromechanical impedance (EMI)-based structural health monitoring (SHM) and damage detection. Despite the previous work, the EMI response characteristics of a degraded piezoelectric-based smart interface have not been sufficiently investigated due to the difficulty in making realistic functional defects via the experiment. To overcome this issue, we present a predictive simulation strategy to comprehensively investigate the EMI response characteristics of a smart interface subjected typical functional degradations. For that, a bolted steel girder connection is selected as a host structure to experimentally conduct EMI response measurement via the smart interface. Then, a finite element (FE) model corresponding to the experimental model is established and updated to reproduce the measured EMI response. By using the updated FE model, four common degradation types, including shear lag effect, transducer debonding, transducer breakage, and interface detaching are simulated and their effects on the EMI response are comprehensively analyzed. It is found that the interface detaching defect has significant impacts on the primary resonances of the EMI response and generates additional peaks with complex modal shapes. Also, the functional defects can result in distinctive EMI response characteristics, which are promising for assessing the functional condition of the smart interface.

Author(s):  
Eunchurn Park ◽  
Sang-Hyun Lee ◽  
Sung-Kyung Lee ◽  
Hee-San Chung ◽  
Kyung-Won Min

The accurate identification of the dynamic response characteristics of a building structure excited by input signals such as real earthquake or wind load is essential not only for the evaluation of the safety and serviceability of the building structure, but for the verification of an analytical model used in the seismic or wind design. In the field of system identification (SI) which constructs system matrices describing the accurate input/output relationship, it is critical that input should have enough energy to excite fundamental structural modes and a good quality of output containing structural information should be measured. In this study forced vibration testing which is important for correlating the mathematical model of a structure with the real one and for evaluating the performance of the real structure was implemented. There exist various techniques available for evaluating the seismic performance using dynamic and static measurements. In this paper, full scale forced vibration tests simulating earthquake response are implemented by using a hybrid mass damper. The finite element (FE) model of the structure was analytically constructed using ANSYS and the model was updated using the results experimentally measured by the forced vibration test. Pseudo-earthquake excitation tests showed that HMD induced floor responses coincided with the earthquake induced ones which was numerically calculated based on the updated FE model.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Yue Zheng ◽  
Xiang Xiao ◽  
Lunhai Zhi ◽  
Guobo Wang

This paper aims to evaluate the impact interaction between the abutment and the girder subjected to nonuniform seismic excitation. An impact model based on tests is presented by taking material properties of the backfill of the abutment into consideration. The conditional simulation is performed to investigate the spatial variation of earthquake ground motions. A two-span continuous steel box girder bridge is taken as the example to analyze and assess the pounding interaction between the abutment and the girder. The detailed nonlinear finite element (FE) model is established and the steel girder and the reinforced concrete piers are modeled by nonlinear fiber elements. The pounding element of the abutment is simulated by using a trilinear compression gap element. The elastic-perfectly plastic element is used to model the nonlinear rubber bearings. The comparisons of the pounding forces, the shear forces of the nonlinear bearings, the moments of reinforced concrete piers, and the axial pounding stresses of the steel girder are studied. The made observations indicate that the nonuniform excitation for multisupport bridge is imperative in the analysis and evaluation of the pounding effects of the bridges.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Houxin She ◽  
Chaofeng Li ◽  
Qiansheng Tang ◽  
Bangchun Wen

In this work, a continuum model is proposed to simulate and interpret the coupling vibration characteristics of a rotating disk-beam system with the dovetail interfaces. The dovetail interface feature is represented by a macroslip dry friction model. The present study also derives a new mode function to simulate the vibration of a rotating beam with loosely assembled dovetail attachment. The new proposed mode function is validated by comparing the natural characteristics and vibration response with those obtained from a finite element (FE) model. At last, based on the nonlinear response results obtained by the Newmark-β method, the effects of different parameters on the nonlinear dynamics of the coupling system are discussed. The following interesting phenomena have been revealed: the flexible disk can impose different influences on the response characteristics of the rotating beam. The effects of dry friction on the beam’s energy dissipation are significant, especially at a low rotational speed. Further analysis yields that the excitation level and friction coefficient also exhibit a significant impact on the damping effect of dry friction. Consequently, it should be noted that the optimal values of the contact surface’s parameters allow achieving a better damping effect in the engineering practice.


1986 ◽  
Vol 35 (4) ◽  
pp. 205-211
Author(s):  
Tosio Sawa ◽  
Shigeo Higuchi ◽  
Ichiro Kataoka ◽  
Hisao Ito

2011 ◽  
Vol 291-294 ◽  
pp. 2276-2280 ◽  
Author(s):  
Fang Qin ◽  
Le Le Zhang

The carry-loading capacity of the airtight structure is important for high-speed trains. The load of air tightness has been analyzed and universal mathematical model has been built. As a calculation model, the FE Model of the vehicle body for a type of high-speed train has been established and the modal, transient analysis has been done. Different influence of load parameters on the vehicle has been analyzed and compared to obtain the response characteristics of the structure. Finally, the strength of the train under different working conditions is verified, weakness is pointed out and suggestions based on the simulation test are given.


Sensors ◽  
2011 ◽  
Vol 11 (7) ◽  
pp. 7285-7301 ◽  
Author(s):  
Yuxiang Zhang ◽  
Fuhou Xu ◽  
Jiazhao Chen ◽  
Cuiqin Wu ◽  
Dongdong Wen

2019 ◽  
Vol 19 (2) ◽  
pp. 373-389 ◽  
Author(s):  
Xubin Lu ◽  
Yee Yan Lim ◽  
Iman Izadgoshasb ◽  
Chee Kiong Soh

Electromechanical impedance (EMI) technique provides an alternative means of characterizing strength development of early age concrete on a real-time basis. However, most existing studies employing the technique heavily rely on statistical tools for strength development characterization. This article proposes a new impedance-based approach to strength and dynamic modulus assessment of cementitious materials. In this approach, a lead zirconate titanate patch is surfaced-bonded on a customized cementitious material specimen, known as ‘Miniature Prism’, in which the conductance signatures throughout the curing process are acquired. A 3D coupled field finite element (FE) model is then developed to compute the conductance signatures and model updating is performed using the experimental results. The conductance signatures computed by the updated FE model are found to be in good agreement with experimental results. The key contribution of this approach is the use of ‘Miniature Prism’ which ensures consistency of the resonance peaks in the conductance spectrum between identical specimens. This has been very difficult, if not impossible, to achieve with the conventional EMI technique. This merit allows for modelling of the electromechanical system and hence parametrically predicting the dynamic modulus of elasticity of the cementitious material throughout the curing process. Comparative study is also conducted on various conventional and advanced techniques and results indicate that the proposed technique is effective in strength assessment of cementitious materials. In addition, the technique is suitable for autonomous online monitoring purpose, and thus exhibits promising potential to substitute the conventional non-destructive testing methods.


Author(s):  
Eric C. Nolan ◽  
Mohsen Safaei ◽  
Steven R. Anton

Abstract Structural health monitoring (SHM) has originally been used for static structures. With the development of high-speed data acquisition technology, SHM systems can monitor structures in seconds. Advanced SHM systems for use in dynamic environments require operation in the microsecond timescale. One promising approach is the electromechanical impedance (EMI) technique. The EMI method monitors the impedance of a structure, and damage is indicated by changes in the impedance. Standard impedance measuring hardware are not practical for microsecond detection due to their slow sampling speeds. Faster impedance measuring techniques have been developed and allow for customizable excitation signals. Researchers have also considered taking measurements at higher frequencies to decrease the measurement time. Past works indicate sensitivity to damage is limited above 600 kHz. The goal of this study is to evaluate the sensitivity of the EMI method to damage with a high voltage excitation signal. It was hypothesized that increasing the voltage would increase damage sensitivity at higher frequencies. In this study, the amplitude of the excitation signal was increased using a high frequency voltage amplifier. A PZT disk bonded to a cantilevered aluminum beam was used as the test structure. Damage was created by decreasing the length of the beam. Finite element (FE) simulation was also employed to achieve a better understanding of the experiment. From the results of the experiment and FE model, using a higher excitation voltage has proven not to increase the sensitivity level of the EMI method. Higher voltages do improve the precision of the measurement by increasing the signal to noise ratio.


Sign in / Sign up

Export Citation Format

Share Document