Strength development monitoring and dynamic modulus assessment of cementitious materials using EMI-Miniature Prism based technique

2019 ◽  
Vol 19 (2) ◽  
pp. 373-389 ◽  
Author(s):  
Xubin Lu ◽  
Yee Yan Lim ◽  
Iman Izadgoshasb ◽  
Chee Kiong Soh

Electromechanical impedance (EMI) technique provides an alternative means of characterizing strength development of early age concrete on a real-time basis. However, most existing studies employing the technique heavily rely on statistical tools for strength development characterization. This article proposes a new impedance-based approach to strength and dynamic modulus assessment of cementitious materials. In this approach, a lead zirconate titanate patch is surfaced-bonded on a customized cementitious material specimen, known as ‘Miniature Prism’, in which the conductance signatures throughout the curing process are acquired. A 3D coupled field finite element (FE) model is then developed to compute the conductance signatures and model updating is performed using the experimental results. The conductance signatures computed by the updated FE model are found to be in good agreement with experimental results. The key contribution of this approach is the use of ‘Miniature Prism’ which ensures consistency of the resonance peaks in the conductance spectrum between identical specimens. This has been very difficult, if not impossible, to achieve with the conventional EMI technique. This merit allows for modelling of the electromechanical system and hence parametrically predicting the dynamic modulus of elasticity of the cementitious material throughout the curing process. Comparative study is also conducted on various conventional and advanced techniques and results indicate that the proposed technique is effective in strength assessment of cementitious materials. In addition, the technique is suitable for autonomous online monitoring purpose, and thus exhibits promising potential to substitute the conventional non-destructive testing methods.

2017 ◽  
Vol 17 (4) ◽  
pp. 902-918 ◽  
Author(s):  
Xubin Lu ◽  
Yee Yan Lim ◽  
Chee Kiong Soh

Strength monitoring of early age concrete improves the efficiency of construction as it provides information on the optimum time for shoring removal and pre-stress transferring. Electromechanical impedance technique has been proven to be a useful tool for strength monitoring of cementitious materials. One of the key limitations of this technique is the lack of physical models, which resulted in strong reliance on statistical analysis tools to quantify the strength of structure being monitored. In this proof-of-concept study, a novel electromechanical impedance–based model with the potential of monitoring the strength of cementitious materials using the concept of Smart Probe is proposed. Instead of directly bonding a lead zirconate titanate patch on the host structure, a lead zirconate titanate was first surface-bonded on a pre-fabricated aluminum beam, which is termed Smart Probe. The Smart Probe was then partially embedded into cementitious materials for strength monitoring. The structural resonant frequencies of the Smart Probe can be identified from the conductance signatures measured from the lead zirconate titanate patch throughout the curing process and serve as strength indicator. By modeling the cementitious material as an elastic foundation supporting the Smart Probe, an analytical model was developed to predict the dynamic modulus of elasticity of cementitious materials based on the resonance frequency of the Smart Probe. Experimental study was carried out on a mortar slab specimen to verify the model and to investigate the performance of the Smart Probe. It was found that the dynamic modulus of elasticity of the host structure could be predicted from the conductance signatures using the proposed model. Compressive strength assessment was achieved by establishing an empirical relation with the dynamic modulus. The proposed electromechanical impedance–based model with Smart Probe is physically parametric in nature and shows high repeatability, which renders its superiority over the conventional statistical method–based electromechanical impedance technique for strength monitoring of cementitious materials.


2020 ◽  
pp. 147592172091692
Author(s):  
Zi Sheng Tang ◽  
Yee Yan Lim ◽  
Scott T Smith ◽  
Ricardo Vasquez Padilla

In order to strengthen and repair existing concrete structural elements, fibre-reinforced polymer composites are often externally bonded using structural adhesives. It is thus desirable to monitor the in situ performance of the sandwiched adhesive layer in such fibre-reinforced polymer–strengthened systems via its stiffness and strength gain throughout the curing process. The electromechanical impedance technique, which relies upon the utilisation of piezoelectric sensors, offers this capability. Although the technique has been verified experimentally in the laboratory, no known electromechanical impedance–based modelling study has been reported. This study, therefore, proposes the first electromechanical impedance–based finite element and analytical models to monitor the curing of structural adhesives. The dynamic elastic modulus of structural adhesives during curing can be determined from the developed models via a model updating process. Semi-empirical relationships were then developed to determine the tensile strength of structural adhesives from the resonance frequency obtained from the electromechanical impedance technique. This was made possible by correlation between static tensile tests on structural adhesives and the dynamic elastic modulus. These electromechanical impedance–based models were found to perform equally well when compared to the previously developed wave propagation–based models. This study shows the robustness of the electromechanical impedance technique for non-destructively predicting the dynamic elastic modulus and tensile strength of adhesives throughout the curing process.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2953
Author(s):  
Najeebullah Tareen ◽  
Junkyeong Kim ◽  
Won-Kyu Kim ◽  
Seunghee Park

Concrete strength and factors affecting its development during early concrete curing are important research topics. Avoiding uncertain incidents during construction and in service life of structures requires an appropriate monitoring system. Therefore, numerous techniques are used to monitor the health of a structure. This paper presents a nondestructive testing technique for monitoring the strength development of concrete at early curing ages. Dispersed carbon nanotubes (CNTs) were used with cementitious materials and piezoelectric (PZT) material, a PZT ceramic, owing to their properties of intra electromechanical effects and sensitivity to measure the electromechanical impedance (EMI) signatures and relevant properties related to concrete strength, such as the elastic modulus, displacement, acceleration, strength, and loading effects. Concrete compressive strength, hydration temperature, mixture ratio, and variation in data obtained from the impedance signatures using fuzzy logic were utilized in the comparative result prediction method for concrete strength. These results were calculated using a fuzzy logic-based model considering the maturity method, universal testing machine (UTM) data, and analyzed EMI data. In the study, for data acquisition, a hybrid PZT–CNT sensor and a temperature sensor (Smart Rock) were embedded in the concrete to obtain the hydration temperature history to utilize the concrete maturity method and provide data on the EMI signatures. The dynamic changes in the medium caused during the phase in the concrete strengthening process were analyzed to predict the strength development process of concrete at early curing ages. Because different parameters are considered while calculating the concrete strength, which is related to its mechanical properties, the proposed novel method considers that changes in the boundary condition occurring in the concrete paste modify the resonant frequency response of the structure. Thus, relating and analyzing this feature can help predict the concrete strength. A comprehensive comparison of the results calculated using the proposed module, maturity method, and cylindrical specimens tested using the UTM proved that it is a cost-effective and fast technique to estimate concrete strength to ensure a safe construction of reinforced cement concrete infrastructures.


2020 ◽  
Vol 31 (12) ◽  
pp. 1477-1494 ◽  
Author(s):  
Chuan Zhang ◽  
Xianfeng Wang ◽  
Qixiang Yan ◽  
Cumaraswamy Vipulanandan ◽  
Gangbing Song

The artificial ground freezing is an important technique for soft soil reinforcement and underground water sealing carried out by continuously refrigerating ground. It is of great significance to monitor the soil strength development in artificial ground freezing projects not only for better evaluation of the soil freeze–thaw status but also for predicting and controlling the concurrent adverse effects which may cause serious engineering accidents. In this study, the electromechanical impedance method was explored in monitoring the soil strength development in the freeze–thaw process. The lead zirconate titanate transducer was embedded inside the soil specimen, and changes in the conductance signatures were monitored throughout the soil freeze–thaw process. The experimental results indicate that the resonant frequency of the embedded lead zirconate titanate transducer can serve as a reliable index for assessment of the soil’s dynamic elastic modulus in the freeze–thaw process. More importantly, an analytical model was developed based on the piezo-elasticity theory to characterize the correlation between the electromechanical impedance of the lead zirconate titanate transducer and the soil’s mechanical properties, and its validity was further confirmed by the experimental research. Based on the proposed model, the development of the soil’s strength can be well predicted from the measured conductance signatures. As a nondestructive testing method, the proposed soil testing technique will help save considerable time and resources by avoiding the conventional sampling, specimen preparation, and testing of soil. The theoretical and experimental research will contribute to the future application of the electromechanical impedance method in real-life artificial ground freezing engineering projects.


2021 ◽  
Vol 25 (6 Part A) ◽  
pp. 4161-4169
Author(s):  
Feng Wu ◽  
Hui Li

High salinity wastewater and coal gasification residue are the by-products which need to be utilized as resources for the sustainable development of coal-to-chemicals technology. Using coal gasification residue as the main raw material, supplemented with 10% Portland cement, and high salinity wastewater as the mixing water instead of tap water to prepare cementitious materials. The XRD, TG-DTG, FTIR, SEM, and MIP were used to analyze the influence mechanism of high salinity wastewater on the properties of cementitious materials. The results show that high salinity wastewater was beneficial to the strength development of the cementitious material. When 25% high salinity mastewater was used instead of tap water, the enhancing rates of compressive strength was 294%, 177%, and 186% curing at 3, 7, and 28 days. This is main due to the sulfate and chloride in the high salinity wastewater can promote the formation of C-S-H gels, Friedel?s, salts and C-A-S-H gels in the hydration process of pastes, which can promote the densification of structure. The pores distribution and structure were optimized, increasing the proportion of capillary pores and decreasing macropore to promote the micro-structure more dense. This study can provide a new idea for the comprehensive utilization of industrial waste and achieve the purpose of ?waste control by waste?.


2020 ◽  
Vol 14 (3) ◽  
pp. 7141-7151 ◽  
Author(s):  
R. Omar ◽  
M. N. Abdul Rani ◽  
M. A. Yunus

Efficient and accurate finite element (FE) modelling of bolted joints is essential for increasing confidence in the investigation of structural vibrations. However, modelling of bolted joints for the investigation is often found to be very challenging. This paper proposes an appropriate FE representation of bolted joints for the prediction of the dynamic behaviour of a bolted joint structure. Two different FE models of the bolted joint structure with two different FE element connectors, which are CBEAM and CBUSH, representing the bolted joints are developed. Modal updating is used to correlate the two FE models with the experimental model. The dynamic behaviour of the two FE models is compared with experimental modal analysis to evaluate and determine the most appropriate FE model of the bolted joint structure. The comparison reveals that the CBUSH element connectors based FE model has a greater capability in representing the bolted joints with 86 percent accuracy and greater efficiency in updating the model parameters. The proposed modelling technique will be useful in the modelling of a complex structure with a large number of bolted joints.


2011 ◽  
Vol 71-78 ◽  
pp. 4501-4505
Author(s):  
Ming Chen ◽  
Wan Zhou

Although modern bridge are carefully designed and well constructed, damage may occur in them due to unexpected causes. Currently, many different techniques have been proposed and investigated in bridge condition assessment. However, evaluation efficiency of condition assessment has not been paid much attention by the researchers. A fast evaluation of the urban railway bridge condition based on the cloud computing is presented. In this paper dynamic FE model and Artificial neural networks technique is applied to model updating. The cloud computing model provides the basis for fast analyses. It was found that when applied to the actually railway bridges, the proposed method provided results similar to those obtained by experts, but can improve efficiency of bridge


2021 ◽  
Vol 11 (9) ◽  
pp. 4028
Author(s):  
Asghar Gholizadeh Vayghan ◽  
Liesbeth Horckmans ◽  
Ruben Snellings ◽  
Arne Peys ◽  
Priscilla Teck ◽  
...  

This research investigated the possibility of using metallurgical slags from the copper and lead industries as partial replacement for cement. The studied slags were fayalitic, having a mainly ferro-silicate composition with minor contents of Al2O3 and CaO. The slags were treated at 1200–1300 °C (to reduce the heavy metal content) and then granulated in water to promote the formation of reactive phases. A full hydration study was carried out to assess the kinetics of reactions, the phases formed during hydration, the reactivity of the slags and their strength activity as supplementary cementitious material (SCM). The batch-leaching behaviour of cementitious mixtures incorporating treated slags was also investigated. The results showed that all three slags have satisfactory leaching behaviour and similar performance in terms of reactivity and contribution to the strength development. All slags were found to have mediocre reactivity and contribution to strength, especially at early ages. Nonetheless, they passed the minimum mechanical performance requirements and were found to qualify for use in cement.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1006
Author(s):  
Akira Yoneyama ◽  
Heesup Choi ◽  
Masumi Inoue ◽  
Jihoon Kim ◽  
Myungkwan Lim ◽  
...  

Recently, there has been increased use of calcium-nitrite and calcium-nitrate as the main components of chloride- and alkali-free anti-freezing agents to promote concrete hydration in cold weather concreting. As the amount of nitrite/nitrate-based accelerators increases, the hydration of tricalcium aluminate (C3A phase) and tricalcium silicate (C3S phase) in cement is accelerated, thereby improving the early strength of cement and effectively preventing initial frost damage. Nitrite/nitrate-based accelerators are used in larger amounts than usual in low temperature areas below −10 °C. However, the correlation between the hydration process and strength development in concrete containing considerable nitrite/nitrate-based accelerators remains to be clearly identified. In this study, the hydrate composition (via X-ray diffraction and nuclear magnetic resonance), pore structures (via mercury intrusion porosimetry), and crystal form (via scanning electron microscopy) were determined, and investigations were performed to elucidate the effect of nitrite/nitrate-based accelerators on the initial strength development and hydrate formation of cement. Nitrite/nitrate-AFm (aluminate-ferret-monosulfate; AFm) was produced in addition to ettringite at the initial stage of hydration of cement by adding a nitrite/nitrate-based accelerator. The amount of the hydrates was attributed to an increase in the absolute amounts of NO2− and NO3− ions reacting with Al2O3 in the tricalcium aluminate (C3A phase). Further, by effectively filling the pores, it greatly contributed to the enhancement of the strength of the hardened cement product, and the degree of the contribution tended to increase with the amount of addition. On the other hand, in addition to the occurrence of cracks due to the release of a large amount of heat of hydration, the amount of expansion and contraction may increase, and it is considered necessary to adjust the amount used for each concrete work.


2021 ◽  
Vol 11 (4) ◽  
pp. 1622
Author(s):  
Gun Park ◽  
Ki-Nam Hong ◽  
Hyungchul Yoon

Structural members can be damaged from earthquakes or deterioration. The finite element (FE) model of a structure should be updated to reflect the damage conditions. If the stiffness reduction is ignored, the analysis results will be unreliable. Conventional FE model updating techniques measure the structure response with accelerometers to update the FE model. However, accelerometers can measure the response only where the sensor is installed. This paper introduces a new computer-vision based method for structural FE model updating using genetic algorithm. The system measures the displacement of the structure using seven different object tracking algorithms, and optimizes the structural parameters using genetic algorithm. To validate the performance, a lab-scale test with a three-story building was conducted. The displacement of each story of the building was measured before and after reducing the stiffness of one column. Genetic algorithm automatically optimized the non-damaged state of the FE model to the damaged state. The proposed method successfully updated the FE model to the damaged state. The proposed method is expected to reduce the time and cost of FE model updating.


Sign in / Sign up

Export Citation Format

Share Document