scholarly journals The Impact Behavior between Coal Gangue Particles and the Tail Beam Based on Rock Failure

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Zhengyuan Xin ◽  
Qingliang Zeng ◽  
Yang Yang

In top coal caving mining, common impact occurs between coal gangue particles and tail beam. Little attention has been paid to the effects of coal gangue particles failure on impact force and tail beam response theoretically, numerically, and experimentally. This paper aims to reveal the influence of coal gangue particles failure on the impact effect of tail beam. First, this paper incorporates the theory of rock failure and energy consumption to assess the impact process of coal gangue particles on the tail beam. A new model to simulate the actual failure conditions of rock particles was developed: the brittle damage-fracture particle model. By comparing damage phenomena and simulation data, the brittle damage-fracture particle model was proved to be correct. Based on this model, a dynamic simulation of brittle coal gangue particles impacting the tail beam was conducted. Then, the dynamic responses of the particles and tail beam were analyzed. The results show that particle failure significantly affects the impact force and dynamic response of the tail beam. The impact effects of coal and gangue particles on the tail beam and their failure energy consumption also differed significantly. This paper stresses the importance of coal gangue particle failure conditions for research on top coal caving mining. Theoretical support is provided for the research of coal gangue identification technology based on the tail beam vibration signal.

2012 ◽  
Vol 204-208 ◽  
pp. 3476-3479 ◽  
Author(s):  
Xiu Xing Zhu ◽  
Shi Feng Xue ◽  
Xing Hua Tong ◽  
Chuan Qi Liu

Cases of pipeline damage caused by landslide are common in coastal or mountainous regions, where the design of buried pipelines should be improved in order to reduce the risk of damage or failure. Dynamic responses of large diameter thin wall steel pipes under impact loading were analyzed using a nonlinear contact model of pipe-soil coupling in this paper. Several influence factors were studied, such as the impact velocity of rockfall, buried depth of pipeline, ratio of diameter to thickness and style of soil. The results show that an ellipsoid induces much more impact force than a sphere which has the same volume, and the larger one in volume have greater impact force for two spheres. Dangerous compressive areas of pipeline occupy 1/6 of the whole area, so the pipelines subject to landslide occur local failure. Based on results, some useful suggestions for the design of pipelines in landslide region are given


2016 ◽  
Vol 698 ◽  
pp. 73-79
Author(s):  
Naoki Miyashita ◽  
Kazuhide Watanabe ◽  
Akihiro Takita ◽  
Mitra Djamal ◽  
Takao Yamaguchi ◽  
...  

At present, a method for evaluating dynamic characteristics of force sensors against small and short-duration impact forces has been developed. In this method, a small mass collides with a force sensor and the impact force is measured with high accuracy as the inertial force of the mass. A pneumatic linear bearing is used in order to realize linear motion with sufficiently small friction acting on the mass, i.e., the moving part of the bearing. Using this method, the dynamic characteristics of the force sensor are evaluated in detail: small and various-duration impact forces with maximum values of approximately 0.4-6.0 N and full width at half maximum (FWHM) of approximately 0.6-2.8 ms are applied to the force sensor and the impact responses of the force sensor are evaluated.


Author(s):  
H. M. Lankarani ◽  
F. Wu

Abstract Reducing the severity of an impact to a structure or a multibody system is a significant aspect of engineering design. This requires the knowledge of variations of the resulting contact forces and also how these contact forces can be reduced. This paper presents an optimization methodology for the selection of proper parameters in the contact/impact force models so as to minimize the maximum value of the contact force. A two-particle model of an impact between two solids is considered, and then generalized to the impact analysis between two bodies of a multibody system. The concept of effective mass is presented in order to compensate for the effect of joint forces or impulses. The system is reduced to a single degree-of-freedom mass-spring-damper vibro-impact system. A single differential equation of motion in the direction of relative indentation of local contact surfaces is derived. Different contact force models of hysteresis form including linear and nonlinear models are described. An optimization problem is then formulated and solved by using the method of modified feasible direction for constrained minimization. A numerical integrator is used at every design iteration to obtain the system dynamic response for a given set of design variables. The objective function is to minimize the peak acceleration of the system equivalent mass resulting from the contact force. Comparison of the system with optimal parameters and non-optimal one shows that the peak contact force is greatly reduced for the optimal one. Since these parameters reflect the material properties (stiffness and damping) of the impacting bodies or surfaces, suitable materials may then be selected based upon the information provided by this optimization procedure. It is observed that the materials, which have good crashworthiness properties should posses capability of dissipating impact energy both in the forms of permanent indentation and internal damping friction. Based upon the analysis of the impact responses, mechanism of energy dissipation, and the typical force-indentation diagram for the high energy absorption materials obtained from experiments, a new contact force model is proposed which could precisely describe the impact response of high energy-absorption materials.


2013 ◽  
Vol 671-674 ◽  
pp. 1519-1523
Author(s):  
Xiao Yu Yan ◽  
Li Hui Wang ◽  
Xiu Li Du

To investigate the response of the bridge pounding, shaking table test was performed using 1/10 scaled reinforced concrete rigid frame bridge specimen. The influence of traveling effect on pounding and the anti-impact capability using dampers were discussed. The experimental results demonstrate that the acceleration responses of the girder and bridge piers, the frequency and the impact force are increased when the traveling wave excitation is considered. Moreover, relatively displacement of the adjacent bridge frames increased magnitudely. Dynamic responses, the frequency and the impact force are decrease when the dampers are installed.Therefore, installation of the dampers is a sustainable and effective way to improve the anti-impact capability.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Z. X. Yu ◽  
L. Zhao ◽  
L. P. Guo ◽  
Y. P. Liu ◽  
C. Yang ◽  
...  

Rock sheds have been widely used to protect against rockfall. Traditionally, a cushion layer is placed on the top of a rock shed to reduce the impact force and dissipate energy. However, heavy cushion layers lead to high dead loads and increased construction costs. This paper discusses the concept of an impact-resilient flexible buffer structure. On the basis of that concept, it also proposes a buffer structure mainly composed of springs, ring nets, spring rods, and support ropes, which can be used to replace the traditional cushion layer on a shed for rockfall protection. Full-scale impact tests were conducted to study the impact-resilient characteristic of the structure combined with numerical simulation. The dynamic responses of the buffer structure, including force, deformation, and energy dissipation, were analysed in depth. Finally, parametric numerical simulations of 33 models were conducted; the spring stiffness of these models ranged from 300 kN/m to 1500 kN/m; the impact energy ranged from 100 kJ to 2000 kJ. Moreover, simple approaches for estimating the impact force and braking distance of the buffer structure were proposed and verified using measured data obtained from the impact test.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Wei Jing ◽  
Shangshang Xing ◽  
Yu Song

There are a large number of adjacent buildings in practical engineering application. The structure will collapse and impact the adjacent structures once the weak column is destroyed under seismic action, and, finally, the earthquake damage is aggravated. Material nonlinearity, initial imperfections, and contact problems in the process of collapse-pounding are considered, and the three-dimensional calculation model with unequal 8-story and 6-story height adjacent frames is established. The dynamic response of adjacent structures caused by collapse-pounding is investigated when there is a weak column at different positions in the 8-story frame, and the influence of gap size on the dynamic responses of adjacent structures is discussed. The results show that the impact force is larger when the weak column of the 8-story frame is close to the top of the 6-story frame; pounding increases the interlayer displacement angle of the 8-story frame and decreases the interlayer displacement angle of the 6-story frame in general; the impact force decreases first, then increases, and after that decreases with the increase of gap size; and the interlayer displacement angle distribution of the 6-story frame is significantly affected after the collapse-pounding of the 8-story frame with a weak column. The collapse-pounding problem of adjacent buildings under seismic action is very complex, which should be paid enough attention in engineering design and application.


2021 ◽  
Vol 11 (19) ◽  
pp. 8883
Author(s):  
Bin Wu ◽  
Jiewei Lin ◽  
Reza Hedayati ◽  
Guichang Zhang ◽  
Junhong Zhang ◽  
...  

To study the effect of a bird striking engine fan on the rotor system, a low-pressure rotor system dynamic model based on a real aero-engine structure was established. Dynamic equations were derived considering the case of the bird strike force which transferred to the rotor system. The bird strike force was obtained from the bird strike process simulation in LS-DYNA, where a smoothed particle hydrodynamics (SPH) mallard model was constructed using a computed tomography (CT) scanner, and finite element method (FEM) was used to simulate the bird strike on an actual fan model. The dynamic equations were solved using the Newmark-β method. The effect of rotational speeds on the rotor system dynamics after bird strike was investigated and discussed. Results show that the maximum bird impact force can reach 104 kN at 3772 r/min. Impact time is only 0.06 s, but the bird strike on fan blades lead to a transient shock on the rotor system. Under the action of transient shocks, the rotor system displacement in the horizontal and vertical directions increase sharply, and the closer the mass point is to the fan, the more it is affected; the vibration amplitude at the fan will increase 15 times within 0.1 s of the bird strike and will gradually decrease with the effect of damping. The dynamics of the rotor system changes from a stable single periodic motion to a complex irregular quasi-periodic motion after a bird strike, and the strike force excites the first-order vibrational mode of the rotor system. This phenomenon occurs at all speeds when bird strikes occur. Bird strikes will cause resonance in the rotor system, which may cause damage to the engine. It was also seen that the bird strike force, and hence the effects on the rotor system, increases as the engine rotational speed increases; the peak force is larger and the number of peaks has increased. The impact force at 3772 r/min is 99.5 kN higher than at 836 r/min, and three additional peaks emerged. This effect is more reflected in the amplitude, and the overall vibration characteristics do not change. Combining the bird strike with the rotor dynamics calculation, the dynamic response of the aero-engine rotor system to bird strike is studied at different flight stages, which is of guiding significance for power evaluation of aero engines after bird strike.


2020 ◽  
pp. 50-64
Author(s):  
Kuladeep Kumar Sadevi ◽  
Avlokita Agrawal

With the rise in awareness of energy efficient buildings and adoption of mandatory energy conservation codes across the globe, significant change is being observed in the way the buildings are designed. With the launch of Energy Conservation Building Code (ECBC) in India, climate responsive designs and passive cooling techniques are being explored increasingly in building designs. Of all the building envelope components, roof surface has been identified as the most significant with respect to the heat gain due to the incident solar radiation on buildings, especially in tropical climatic conditions. Since ECBC specifies stringent U-Values for roof assembly, use of insulating materials is becoming popular. Along with insulation, the shading of the roof is also observed to be an important strategy for improving thermal performance of the building, especially in Warm and humid climatic conditions. This study intends to assess the impact of roof shading on building’s energy performance in comparison to that of exposed roof with insulation. A typical office building with specific geometry and schedules has been identified as base case model for this study. This building is simulated using energy modelling software ‘Design Builder’ with base case parameters as prescribed in ECBC. Further, the same building has been simulated parametrically adjusting the amount of roof insulation and roof shading simultaneously. The overall energy consumption and the envelope performance of the top floor are extracted for analysis. The results indicate that the roof shading is an effective passive cooling strategy for both naturally ventilated and air conditioned buildings in Warm and humid climates of India. It is also observed that a fully shaded roof outperforms the insulated roof as per ECBC prescription. Provision of shading over roof reduces the annual energy consumption of building in case of both insulated and uninsulated roofs. However, the impact is higher for uninsulated roofs (U-Value of 3.933 W/m2K), being 4.18% as compared to 0.59% for insulated roofs (U-Value of 0.33 W/m2K).While the general assumption is that roof insulation helps in reducing the energy consumption in tropical buildings, it is observed to be the other way when insulation is provided with roof shading. It is due to restricted heat loss during night.


2013 ◽  
Vol 7 (11) ◽  
pp. 52-57
Author(s):  
Oleg Markovich Terentiev ◽  
◽  
Anton Iosifovich Kleshchov ◽  

2016 ◽  
Vol 21 (1) ◽  
pp. 9-20
Author(s):  
Ersalina Tang

The purpose of this study is to analyze the impact of Foreign Direct Investment, Gross Domestic Product, Energy Consumption, Electric Consumption, and Meat Consumption on CO2 emissions of 41 countries in the world using panel data from 1999 to 2013. After analyzing 41 countries in the world data, furthermore 17 countries in Asia was analyzed with the same period. This study utilized quantitative approach with Ordinary Least Square (OLS) regression method. The results of 41 countries in the world data indicates that Foreign Direct Investment, Gross Domestic Product, Energy Consumption, and Meat Consumption significantlyaffect Environmental Qualities which measured by CO2 emissions. Whilst the results of 17 countries in Asia data implies that Foreign Direct Investment, Energy Consumption, and Electric Consumption significantlyaffect Environmental Qualities. However, Gross Domestic Product and Meat Consumption does not affect Environmental Qualities.


Sign in / Sign up

Export Citation Format

Share Document