scholarly journals The Health Hazards of Volcanoes: First Evidence of Neuroinflammation in the Hippocampus of Mice Exposed to Active Volcanic Surroundings

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
A. Navarro-Sempere ◽  
P. Martínez-Peinado ◽  
A. S. Rodrigues ◽  
P. V. Garcia ◽  
R. Camarinho ◽  
...  

Neuroinflammation is a process related to the onset of neurodegenerative diseases; one of the hallmarks of this process is microglial reactivation and the secretion by these cells of proinflammatory cytokines such as TNFα. Numerous studies report the relationship between neuroinflammatory processes and exposure to anthropogenic air pollutants, but few refer to natural pollutants. Volcanoes are highly inhabited natural sources of environmental pollution that induce changes in the nervous system, such as reactive astrogliosis or the blood-brain barrier breakdown in exposed individuals; however, no neuroinflammatory event has been yet defined. To this purpose, we studied resting microglia, reactive microglia, and TNFα production in the brains of mice chronically exposed to an active volcanic environment on the island of São Miguel (Azores, Portugal). For the first time, we demonstrate a proliferation of microglial cells and an increase in reactive microglia, as well an increase in TNFα secretion, in the central nervous system of individuals exposed to volcanogenic pollutants.

2020 ◽  
Vol 4 (2) ◽  
pp. 053-062
Author(s):  
Dutta Rajib

Blood vessels that supply and feed the central nervous system (CNS) possess unique and exclusive properties, named as blood–brain barrier (BBB). It is responsible for tight regulation of the movement of ions, molecules, and cells between the blood and the brain thereby maintaining controlled chemical composition of the neuronal milieu required for appropriate functioning. It also protects the neural tissue from toxic plasma components, blood cells and pathogens from entering the brain. In this review the importance of BBB and its disruption causing brain pathology and progression to different neurological diseases like Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD) etc. will be discussed.


1984 ◽  
Vol 4 (2) ◽  
pp. 93-98 ◽  
Author(s):  
Luigi F. Agnati ◽  
Kjell Fuxe

The hypothesis is introduced that miniaturization of neuronal circuits in the central nervous system and the hierarchical organization of the various levels, where information handling can take place, may be the key to understand the enormous capability of the human brain to store engrams as well as its astonishing capacity to reconstruct and organize engrams and thus to perform highly sophisticated integrations. The concept is also proposed that in order to understand the relationship between the structural and functional plasticity of the central nervous system it is necessary to postulate the existence of memory storage at the network level, at the local circuit level, at the synaptic level, at the membrane level, and finally at the molecular level. Thus, memory organization is similar to the hierarchical organization of the various levels, where information handling takes place in the nervous system. In addition, each higher level plays a role in the reconstruction and organization of the engrams stored at lower levels. Thus, the trace of the functionally stored memory (i.e. its reconstruction and organization at various levels of storage) will depend not only on the chemicophysical changes in the membranes of the local circuits but also on the organization of the local circuits themselves and their associated neuronal networks.


1935 ◽  
Vol 31 (6) ◽  
pp. 777-787
Author(s):  
D. S. Vorontsov

Not only in the peripheral working organs, irritating substances are formed, which, as we can see, take an active part in their regulation, but also in the central nervous system, in the relationship of its individual elements, such substances apparently play an important role.


1989 ◽  
Vol 5 (2) ◽  
pp. 247-260 ◽  
Author(s):  
Stata Norton

Association between functional damage and damage to the central nervous system from toxic agents can be used to determine the value of behavioral tests as predictors of damage to the nervous system. Variability in data from behavioral tests may be caused, in part, by varying levels of structural differences in the nervous system. Stepwise multiple regression is one method for analyzing the relationship between variability in data resulting from linkage between functional and morphological or other parameters of the structure of the nervous system. As an example, the predictive value of four behavioral tests is assessed in detecting thinning of the cerebral cortex following gestational exposure of rats to ionizing radiation. In this analysis, there were seven independent variables for predicting cortical thickness. The sequence of number of times each variable was used in prediction, from most frequent to least frequent, was: angle of stride > negative geotaxis > continuous corridor> body weight > width of stride > length of stride > reflex suspension. The data support the concept that there are varying degrees of predictive associations between these functional and cortical parameters.


2020 ◽  
Vol 21 (6) ◽  
pp. 2010 ◽  
Author(s):  
Maria Rosaria Rizzo ◽  
Renata Fasano ◽  
Giuseppe Paolisso

Adiponectin (ADPN) is a plasma protein secreted by adipose tissue showing pleiotropic effects with anti-diabetic, anti-atherogenic, and anti-inflammatory properties. Initially, it was thought that the main role was only the metabolism control. Later, ADPN receptors were also found in the central nervous system (CNS). In fact, the receptors AdipoR1 and AdipoR2 are expressed in various areas of the brain, including the hypothalamus, hippocampus, and cortex. While AdipoR1 regulates insulin sensitivity through the activation of the AMP-activated protein kinase (AMPK) pathway, AdipoR2 stimulates the neural plasticity through the activation of the peroxisome proliferator-activated receptor alpha (PPARα) pathway that inhibits inflammation and oxidative stress. Overall, based on its central and peripheral actions, ADPN appears to have neuroprotective effects by reducing inflammatory markers, such as C-reactive protein (PCR), interleukin 6 (IL6), and Tumor Necrosis Factor a (TNFa). Conversely, high levels of inflammatory cascade factors appear to inhibit the production of ADPN, suggesting bidirectional modulation. In addition, ADPN appears to have insulin-sensitizing action. It is known that a reduction in insulin signaling is associated with cognitive impairment. Based on this, it is of great interest to investigate the mechanism of restoration of the insulin signal in the brain as an action of ADPN, because it is useful for testing a possible pharmacological treatment for the improvement of cognitive decline. Anyway, if ADPN regulates neuronal functioning and cognitive performances by the glycemic metabolic system remains poorly explored. Moreover, although the mechanism is still unclear, women compared to men have a doubled risk of developing cognitive decline. Several studies have also supported that during the menopausal transition, the estrogen reduction can adversely affect the brain, in particular, verbal memory and verbal fluency. During the postmenopausal period, in obese and insulin-resistant individuals, ADPN serum levels are significantly reduced. Our recent study has evaluated the relationship between plasma ADPN levels and cognitive performances in menopausal women. Thus, the aim of this review is to summarize both the mechanisms and the effects of ADPN in the central nervous system and the relationship between plasma ADPN levels and cognitive performances, also in menopausal women.


2020 ◽  
Author(s):  
Ting-Ting Luo ◽  
Chun-Qiu Dai ◽  
Jia-Qi Wang ◽  
Zheng-Mei Wang ◽  
Yi Yang ◽  
...  

Abstract Objectives: Drp1 is widely expressed in the mouse central nervous system and plays a role in inducing the mitochondrial fission process. Many diseases are associated with Drp1 and mitochondria. However, since the exact distribution of Drp1 has not been specifically observed, it is difficult to determine the impact of anti-Drp1 molecules on the human body. Clarifying the specific Drp1 distribution could be a good approach to targeted treatment or prognosis. Methods: We visualized the distribution of Drp1 in different brain regions and explicated the relationship between Drp1 and mitochondria. GAD67-GFP knock-in mice were utilized to detect the expression patterns of Drp1 in GABAergic neurons. We also further analyzed Drp1 expression in human malignant glioma tissue. Results : Drp1 was widely but heterogeneously distributed in the central nervous system. Further observation indicated that Drp1 was highly and heterogeneously expressed in inhibitory neurons. Under transmission electron microscopy, the distribution of Drp1 was higher in dendrites than other areas in neurons, and only a small amount of Drp1 was localized in mitochondria. In human malignant glioma, the fluorescence intensity of Drp1 increased from grade I-III, while grade IV showed a declining trend. Conclusion: In this study, we observed a wide heterogeneous distribution of Drp1 in the central nervous system, which might be related to the occurrence and development of neurologic disease. We hope that the relationship between Drp1 and mitochondria may will to therapeutic guidance in the clinic.


Sign in / Sign up

Export Citation Format

Share Document