scholarly journals Screening of Active Components and Key Targets of Radix Codonopsis in the Treatment of Gastric Cancer

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lijun Tang ◽  
Jinhui Chen ◽  
Jin Yin ◽  
Mingli Fang

Gastric cancer is the fifth most common cancer type in the world. The incidence and mortality of gastric cancer in China ranks second among malignant tumors in the country. At present, the main treatment method of gastric cancer is still surgical resection combined with chemotherapy. However, chemotherapy drugs will cause serious toxic and side effects on other normal tissues and cells. At the same time, chemotherapy drugs can make patients develop drug resistance and seriously affect the curative effect. By contrast, Chinese medicine has more advantages in the treatment of cancer. Dangshen (Radix Codonopsis), a traditional Chinese medicine, has been proved to be effective for the clinical treatment of gastric cancer. However, due to the complex components of Dangshen, the main active components and pharmacological mechanism for its treatment of gastric cancer are still unclear. In this study, the main active components and pharmacological mechanism of Radix Codonopsis in the treatment of gastric cancer were preliminarily explored based on network pharmacology and molecular docking. We obtained bioactive compounds and targets from Radix Codonopsis from the Chinese Medicine System Pharmacology Database (TCMSP) and constructed the active ingredient-target network of Codonopsis pilosula. We then obtained targets related to gastric cancer from the disease database. The common targets of Radix Codonopsis and gastric cancer were the key target of Radix Codonopsis for the treatment of gastric cancer. Then, we used Metascapedatabase to conduct functional enrichment analysis on the key targets of Radix Codonopsis for the treatment of gastric cancer to clarify the mechanism of Radix Codonopsis for the treatment of gastric cancer. We constructed a network to screen the main bioactive compounds and therapeutic targets, assessed the prognostic value of the main target genes by survival analysis, and finally assessed the binding affinity of the main target genes and main bioactive compounds of Radix Codonopsis for the treatment of gastric cancer by molecular docking. The results showed that the main active compounds of Codonopsis pilosula in treating gastric cancer were luteolin and cryptotanshinone, which played a role in the treatment of gastric cancer through the multitarget and multipathway mechanism.

2021 ◽  
Vol 43 (1) ◽  
pp. 65-78
Author(s):  
Zhaowei Zhai ◽  
Xinru Tao ◽  
Mohammad Murtaza Alami ◽  
Shaohua Shu ◽  
Xuekui Wang

Hypertension is a cardiovascular disease that causes great harm to health and life, affecting the function of important organs and accompanied by a variety of secondary diseases, which need to be treated with drugs for a long time. P. ternata alone or combination with western medicine has played an important role in traditional Chinese medicine. Although P. ternata is used clinically to treat hypertension, its functional molecular mechanism and pharmacological mechanism have not been elucidated. Therefore, in this study, the potentially effective components, and targets of P. ternata in the treatment of hypertension were screened by the method of network pharmacology, and the mechanism of P. ternata in the treatment of hypertension was analyzed by constructing a component-target relationship network, PPI interaction network, targets’ function analysis, and molecular docking. In the study, 12 potentially effective components and 88 targets were screened, and 3 potential protein modules were found and analyzed after constructing a PPI network using targets. In addition, 10 targets were selected as core targets of the PPI network. After that, the targets were analyzed by Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Finally, the molecular docking method is used to study the interaction between the targets and the active components. The above evidence shows that the mechanism of P. ternata in the treatment of hypertension is complicated, as it acts in many ways, mainly by affecting nerve signal transmission, cell proliferation, and apoptosis, calcium channels, and so on. The binding between targets and active components mainly depends on Pi bonds and hydrogen bonds. Using the method of network pharmacology and molecular docking to analyze the mechanism of P. ternata in the treatment of hypertension will help to provide a better scientific basis for the combined use of traditional Chinese medicine and western medicine, and will better help to improve the quality of P. ternata and point out its direction.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuepeng Jiang ◽  
Xiaoxuan Zhao ◽  
Jie Yu ◽  
Qiao Wang ◽  
Chengping Wen ◽  
...  

Abstract Background Sha-Shen-Mai-Dong decoction (SSMD) is a classical prescription widely used in primary Sjogren’s Syndrome (pSS) therapy. This study aims to explore the potential pharmacological mechanism of SSMD on pSS. Methods Active components of SSMD were obtained from Traditional Chinese Medicine Integrative Database and Traditional Chinese Medicine Systems Pharmacology databases and targets of SSMD were predicted by Pharmmapper and STITCH database. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were carried out to explore the function characteristics of SSMD. The expression matrix of microarray of pSS was obtained from Gene Expression Omnibus and we obtained 162 differentially expressed genes (DEGs). Protein-protein interaction (PPI) networks were constructed to identify the hub targets. Principal component analysis (PCA) and molecular docking were conducted to further elucidate the possibility of SSMD for pSS. Results SSMD contained a total of 1056 active components, corresponding to 88 targets, among which peripheral myelin protein 2(PMP2), androgen receptor (AR) and glutamic acid decarboxylase 1(GAD1) are associated with multiple active components in SSMD and may be the core targets. Moreover, these targets were closely related to tissue pathological injury in SS, such as lacrimal gland, salivary gland and nervous system injury. GO and KEGG analysis showed that 88 targets enriched in REDOX process, transcriptional regulation and negative regulation of apoptosis process. Besides, SSMD may influence the cell proliferation, gene transcription through regulating Ras and cAMP-related signaling pathways. In addition, SSMD may show effects on immune regulation, such as macrophage differentiation, Toll-like receptor 4 signaling pathway and T-helper 1 in SS. Moreover, PPI network suggested that FN1, MMP-9 may be the hub targets in SSMD. Result of PCA and molecular docking analysis further determined the feasibility of SSMD in treating pSS. Conclusion SSMD can regulate multiple biological processes by virtue of its multiple active components, thus showing prominent advantage in the treatment of pSS. The discovery of active ingredients and targets in SSMD provides valuable resources for drug research and development for pSS.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Ce Zhou ◽  
Hang Zhou ◽  
Furong Zhang ◽  
Liangliang Hao ◽  
Jing Guo

Background. Ulcerative colitis (UC), a chronic and nonspecific inflammatory bowel disease, seriously affects the quality of patients’ life. Han Re Bing Yong Fa (treating diseases with both cool- and warm-natured herbs) is a classical therapeutic principle of traditional Chinese medicine (TCM), which is often used to treat chronic diseases, including UC. The Gan Jiang-Huang Qin-Huang Lian-Ren Shen decoction (GJHQHLRSD), a representative of Han Re Bing Yong Fa, is effective in alleviating inflammatory symptoms in UC. However, the pharmacological mechanism underlying its anti-inflammatory effect remains unclear. Methods. A network pharmacology strategy, including the construction and analysis of the drug–disease network, was used to explore the complex mechanism of GJHQHLRSD treatment of UC. In addition, molecular docking technology was used to preliminarily examine the binding ability of the potential active components and core therapeutic targets of GJHQHLRSD. Results. The network pharmacology results revealed 140 targets of GJHQHLRSD which are involved in UC. The PPI network analysis identified seven target genes: BCL2L1, NR3C1, ALOX5, S1PR5, NR1I2, CYP2D6, and LPAR6. The molecular docking results revealed that the following displayed strongest combined effects: EGFR with kaempferol, ERK1 with worenine, STAT3 with Palmidin A, BCL2L1 with diop and VEGFA with ginsenoside Rg3. The KEGG and gene ontology enrichment analyses results indicated that GJHQHLRSD functions by regulating the EGFR signaling pathway in UC treatment. Other effective biological processes involved in UC treatment included cancer-related as well as inflammation and viral infection signaling pathways, such as the “MicroRNAs in cancer,” “TNF signaling pathway,” and “JAK-STAT signaling pathway.” Conclusions. This study reflects the multicomponent, multitarget, and multipathway characteristics of the action mechanism of GJHQHLRSD in treating UC. Furthermore, it helps better understand the TCM therapeutic principle of Han Re Bing Yong Fa and explore novel candidate drug targets for UC treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yihui Feng ◽  
Xinyi Chai ◽  
Yingyin Chen ◽  
Yan Ning ◽  
Ying Zhao

Background and Purpose. Premature ovarian insufficiency (POI) is a serious reproductive disease in females that is characterized by menstrual and ovulation disorders and infertility. The clinical efficacy of complementary and alternative medicine (CAM) has been reported in POI, including compound Chinese medicine. Zishen Yutai Pills (ZSYTP), a well-known patented Chinese medicine, has been widely used for treating POI; however, the pharmacological mechanism and molecular targets of ZSYTP remain unknown. Here, we systematically elucidated the pharmacological mechanism of ZSYTP on POI using a network pharmacology approach and further validated our findings with molecular docking. Methods. A comprehensive strategy based on several Chinese herb databases and chemical compound databases was established to screen active compounds of ZSYTP and predict target genes. For network pharmacological analysis, network construction and gene enrichment analysis were conducted and further verified by molecular docking. Results. A total of 476 target genes of ZSYTP were obtained from 205 active compounds. 13 herbs of ZSYTP overlapped on 8 active compounds based on the compound-target-disease network (C-T network). 20 biological processes and 9 pathways were strongly connected to the targets of ZSYTP in treating POI, including negative regulation of gene expression, mRNA metabolic process, hypoxia-inducible factor 1 (HIF-1) signaling pathway, and gluconeogenesis. Finally, molecular docking was visualized. Conclusion. Intriguingly, the signal pathways and biological processes uncovered in this study implicate inflamm-aging and glucose metabolism as potential pathological mechanisms of POI. The therapeutic effect of ZSYTP could be mediated by regulating glucose metabolism and HIF-1 signal pathway. Collectively, this study sheds light on the therapeutic potential of ZSYTP on POI.


2021 ◽  
Vol 16 (1) ◽  
pp. 1934578X2098842
Author(s):  
Li Cheng ◽  
Fei Wang ◽  
Shun Bo Zhang ◽  
Qiu Yun You

Purpose Fufang Banlangen Keli (FBK) has been recommended for its clinical treatment of Coronavirus disease 2019 (COVID-19) and severe acute respiratory syndrome (SARS), but the mechanism of action is unclear. So, using network pharmacology and molecular docking, we studied the active components and mechanism of FBK in the treatment of COVID-19 and SARS. Methods The Encyclopedia of Traditional Chinese Medicine and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform were used to screen the active components by oral bioactivity and drug likeness. Then, PharmMapper and SwissTargetPrediction databases were used to screen potential target genes of active components; the related target genes of COVID-19 and SARS were obtained from the GeneCards database. The intersection of the active components and disease-related targets was performed by the Venny2.1.0 database. The DAVID6.8 database and KOBAS3.0 database were used to get gene ontology (GO) function enrichment and Kyoto Encyclopedia of Genes and Genomes pathway annotation of gene targets. The “components-targets-pathways (C-T-P)” network of FBK was conducted by Cytoscape3.6.1 software. The top active components, angiotensin-converting enzyme 2 (ACE2) and SARS-CoV-2 3 Cl, were imported into AutoDock and PyMOL for molecular docking. Results From the FBK, a total of 28 active components and 73 gene targets were screened through network pharmacology. Twenty pathways were analyzed, including pathways in cancer, nod-like receptor signaling pathway, and pancreatic cancer, etc. ( P < 0.05). A total of 337 items were obtained by GO functional enrichment analysis ( P < 0.05), including 257 items for biological process, 38 items for cell composition, and 42 items for molecular function. Furthermore, molecular docking studies were performed to study potential binding between the key gene targets and selected active components. Conclusion Based on network pharmacology and molecular docking technology, qingdainone, (2Z)-2-(2-oxoindolin-3-ylidene) indolin-3-one, sinensetin, and acacetin in FBK were verified to bind to ACE2 and SARS-COV-2 3 Cl, so as to treat COVID-19 and SARS.


2021 ◽  
Author(s):  
Jing Yang ◽  
Chao-Tao Tang ◽  
Ruiri Jin ◽  
Bixia Liu ◽  
Peng Wang ◽  
...  

Abstract Huanglian jiedu decoction (HLJDD) is a heat-clearing and detoxifying agent composed of four kinds of Chinese herbal medicine. Previous studies have shown that HLJDD can improve the inflammatory response of ulcerative colitis (UC) and maintain intestinal barrier function. However, its molecular mechanism is not completely clear. In this study, we verified the bioactive components (BCI) and potential targets of HLJDD in the treatment of UC by means of network pharmacology and molecular docking, and constructed the pharmacological network and PPI network. Then the core genes were enriched by GO and KEGG. Finally, the bioactive components were docked with the key targets to verify the binding ability between them. A total of 54 active components related to UC were identified. Ten genes are considered to be very important to PPI network. Functional analysis showed that these target genes were mainly involved in the regulation of cell response to different stimuli, IL-17 signal pathway and TNF signal pathway. The results of molecular docking showed that the active components of HLJDD had good affinity with Hub gene. This study systematically elucidates the "multi-component, multi-target, multi-pathway" mechanism of anti-UC with HLJDD for the first time, suggesting that HLJDD or its active components may be candidate drugs for the treatment of ulcerative colitis.


2021 ◽  
Author(s):  
Xiaojian Wang ◽  
Rui Wang ◽  
Ting Xu ◽  
Hongting Jin ◽  
Peijian Tong ◽  
...  

Abstract Background The lesion of marrow is a crucial factor in orthopedic diseases, which is recognized by orthopedics-traumatology expert from "Zhe-School of Chinese Medicine". The Chinese herbs of regulating marrow has been widely used to treat osteonecrosis of the femoral head (ONFH) in China, while the interaction mechanisms were still elucidated. Thus, we conducted this study to explore the underlying mechanism of the five highest-frequency Chinese herbs of regulating marrow(HF-CHRM) in the treatment of ONFH with the aid of network pharmacology(NP) and molecular docking(MD). Methods The active components and potential targets of HF-CHRM were obtained through several online databases, such as Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), UniProt database. The gene targets related to ONFH were collected with the help of the OMIM and GeneCards disease-related databases. The "drug- component-target-disease" network and protein-protein interaction(PPI) network of the drug and disease intersecting targets were constructed by using Cytoscape software and the STRING database. R software was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The MD of critical components and targets was carried out using Autodock Vina and Pymol to validate the binding affinity. Results A total of 54 active components, 1074 drug targets and 195 gene targets were obtained. There were 1219 ONFH related targets. 39 drug and disease intersection targets(representative genes: IL6, TP53, VEGFA, ESR1, IL1B) were obtained and considered potential therapeutic targets. 1619 items were obtained by the GO enrichment analysis, including 1517 biological processes, 10 cellular components and 92 molecular functions, which is mainly related to angiogenesis, bone and lipid metabolism and inflammatory reaction. The KEGG pathway enrichment analysis revealed 119 pathways, including AGE-RAGE signaling pathway, PI3K-Akt signaling pathway and IL-17 signaling pathway. MD results showed that quercetin, wogonin, and kaempferol active components had good affinity with IL6, TP53, and VEGFA core proteins. Conclusion The HF-CHRM can treat ONFH by multi-component, multi-target, and multi-pathway comprehensive action.


2021 ◽  
Author(s):  
Xi Cen ◽  
Yan Wang ◽  
LeiLei Zhang ◽  
XiaoXiao Xue ◽  
Yan Wang ◽  
...  

Abstract BackgroundType 2 diabetes mellitus (T2DM) is regarded as Pi Dan disease in traditional Chinese medicine (TCM). Dahuang Huanglian Xiexin Decoction (DHXD), a classical TCM formula, has been used for treating Pi Dan disease in clinic, its pharmacological mechanism has not been elucidated. MethodsThis study used network pharmacological analysis and molecular docking approach to explore the mechanism of DHXD on T2DM. Firstly, the compounds in DHXD were obtained from TCMSP and TCMID databases, the potential targets were determined based on TCMSP and UniProt databases. Next, Genecards, Digenet and UniProt databases were used to identify the targets of T2DM. Then, the protein-protein interaction (PPI) network was established with overlapping genes of T2DM and compounds, and the core targets in the network were identified and analyzed. Then, the David database was used for GO and KEGG enrichment analysis. Finally, the target genes were selected and the molecular docking was completed by Autodock software to observe the binding level of active components with target genes.ResultsA total of 397 related components and 128 overlapping genes were identified. After enrichment analysis, it was found that HIF-1, TNF, IL-17 and other signaling pathways, as well as DNA transcription, gene expression, apoptosis and other cellular biological processes had the strongest correlation with the treatment of T2DM by DHXD, and most of them occurred in the extracellular space, plasma membrane and other places, which were related to enzyme binding and protein binding. In addition, 42 core genes of DHXD, such as VEGFA, TP53 and MAPK1, were considered as potential therapeutic targets, indicating the potential mechanism of DHXD on T2DM. Finally, the results of molecular docking showed that HIF-1 pathway had strong correlation with the target genes INSR and GLUT4, quercetin and berberine had the strongest binding power with them respectively.ConclusionThis study summarized the main components of DHXD in the treatment of T2DM, identified the core genes and pathways, and systematically analyzed the interaction of related targets, trying to lay the foundation for clarifying the potential mechanism of DHXD on T2DM, so as to carry out further research in the future.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Li Han ◽  
Ying Han

Background. Herba Sarcandrae is used in the clinical practice of traditional Chinese medicine to deal with gastric cancer. However, there are few studies on its precise mechanism. Method. In this study, a network pharmacological approach was utilized to construct a molecular/target/pathway molecular regulatory network for the anti-gastric-cancer effect of Herba Sarcandrae. The active components of Herba Sarcandrae and their potential mechanisms were explored. Chemical components of the Herba Sarcandrae were identified through a database, and they were evaluated and screened based on oral bioavailability and drug similarity. Results. Genes related to gastric cancer were found in the Gene Expression Omnibus (GEO) database, and gene targets related to anti-gastric-cancer were chosen by comparison. Using annotation, visualization, and a comprehensive discovery database, the function and related pathways of target genes were analyzed and screened. Cytoscape software was utilized to construct a component/target/pathway network for the antitumor effect of Herba Sarcandrae. Finally, 6 drug ingredients and 29 target genes related to gastric cancer were detected. IL-17 signaling pathway, NF-kappa B signaling pathway, and other signaling pathways were significantly enriched. Many signaling pathways that directly act on tumors and indirect pathways inhibit the development of gastric cancer. Conclusion. This study provides a scientific basis for further elucidating the mechanism of the anti-gastric-cancer effect of Herba Sarcandrae.


2020 ◽  
Author(s):  
Li Chen ◽  
Hua Qu ◽  
Yu Tan ◽  
Tao Han Wu ◽  
Zhuo Da Shi

Abstract Background The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or COVID-19) disease has led to a wide-spread global pandemic. There is no specific antiviral drug proven effective for the treatment of patients with COVID-19 at present. Combination of western and traditional Chinese medicine (TCM) is recommended, and Lian Hua Qing Wen (LHQW) capsule is a basic prescription and widely used to treat COVID-19 in China. However, the mechanisms of LHQW capsule treating COVID-19 are not clear. The aim of the study is to explore the mechanisms of LHQW capsule treating COVID-19 based on network pharmacy and molecular docking approach. Methods The active compounds and targets of LHQW capsule were obtained from traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP). COVID-19 related target genes were obtained from GeneCards database and OMIM database. Protein–protein interaction (PPI) networks of LHQW capsule targets and COVID-19-related genes were visualized and merged to identify the candidate targets for LHQW capsule treating COVID-19. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were also performed. The hub genes involved in the gene-related pathways were screened and their corresponding compounds were used for in vitro validation of molecular docking predictions.Results A total of 185 active compounds of LHQW capsule were screened out, and 263 targets were predicted. Third hundred and fifty-two COVID-19 related target genes were obtained from GeneCards database and OMIM database. GO functional enrichment analysis showed that the biological processes of LHQW capsule treating COVID-19 were closely linked with the regulation of inflammation, immunity, cytokines production, vascular permeability, oxidative stress and apoptosis. KEGG enrichment analysis revealed that the pathways of LHQW capsule treating COVID-19 were significantly enriched in AGE−RAGE signaling pathway in diabetic complications, Kaposi sarcoma−associated herpesvirus infection, TNF, IL−17, and Toll−like receptor (TLR) signaling pathway. The hub targets genes in the gene-related pathways analysis of LHQW capsule treating COVID-19 included MAPK1, MAPK3, RELA, IL-6 and CASP8, which closely associated with inflammation, cytokines storm and apoptosis. Finally, molecular docking showed that top 5 compounds of LHQW capsule also had good binding activities to the important targets in COVID-19.Conclusions The mechanisms of LHQW capsule treating COVID-19 may involve in inhibiting inflammatory response, cytokine storm and virus infection, and regulating immune reactions, apoptosis and endothelial barrier.


Sign in / Sign up

Export Citation Format

Share Document