scholarly journals Network Pharmacology and Molecular Docking Combined to Analyze the Molecular and Pharmacological Mechanism of Pinellia ternata in the Treatment of Hypertension

2021 ◽  
Vol 43 (1) ◽  
pp. 65-78
Author(s):  
Zhaowei Zhai ◽  
Xinru Tao ◽  
Mohammad Murtaza Alami ◽  
Shaohua Shu ◽  
Xuekui Wang

Hypertension is a cardiovascular disease that causes great harm to health and life, affecting the function of important organs and accompanied by a variety of secondary diseases, which need to be treated with drugs for a long time. P. ternata alone or combination with western medicine has played an important role in traditional Chinese medicine. Although P. ternata is used clinically to treat hypertension, its functional molecular mechanism and pharmacological mechanism have not been elucidated. Therefore, in this study, the potentially effective components, and targets of P. ternata in the treatment of hypertension were screened by the method of network pharmacology, and the mechanism of P. ternata in the treatment of hypertension was analyzed by constructing a component-target relationship network, PPI interaction network, targets’ function analysis, and molecular docking. In the study, 12 potentially effective components and 88 targets were screened, and 3 potential protein modules were found and analyzed after constructing a PPI network using targets. In addition, 10 targets were selected as core targets of the PPI network. After that, the targets were analyzed by Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Finally, the molecular docking method is used to study the interaction between the targets and the active components. The above evidence shows that the mechanism of P. ternata in the treatment of hypertension is complicated, as it acts in many ways, mainly by affecting nerve signal transmission, cell proliferation, and apoptosis, calcium channels, and so on. The binding between targets and active components mainly depends on Pi bonds and hydrogen bonds. Using the method of network pharmacology and molecular docking to analyze the mechanism of P. ternata in the treatment of hypertension will help to provide a better scientific basis for the combined use of traditional Chinese medicine and western medicine, and will better help to improve the quality of P. ternata and point out its direction.

2020 ◽  
Vol 23 (1) ◽  
pp. 28-40
Author(s):  
Jia Li ◽  
Xinchang Qi ◽  
Yajuan Sun ◽  
Yingyu Zhang ◽  
Jiajun Chen

Aim and Objective: Effective components and the mechanism of action of Zhichan powder for the treatment of Parkinson's disease were researched at a systematic level. Materials and Methods: Screening of active components in Zhichan powder for the treatment of Parkinson's disease was conducted using the Traditional Chinese Medicine Systems Pharmacology database, and a medicine-target-disease network was established with computational network pharmacology. Results: By using network pharmacology methods, we identified 18 major active components in Zhichan powder through screening, indicating a connection between chemical components of this Traditional Chinese Medicine and Parkinson’s disease-related targets. Conclusion: The medicine-target-disease system of Zhichan powder established by network pharmacology permitted visualization of clustering and differences among chemical components in this prescription, as well as the complex mechanism of molecular activities among those effective components, relevant targets, pathways, and the disease. Thus, our results provide a new perspective and method for revealing the mechanism of action of Traditional Chinese Medicine prescriptions.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Wenhao Niu ◽  
Feng Wu ◽  
Haiming Cui ◽  
Wenyue Cao ◽  
YuChieh Chao ◽  
...  

“Three formulas and three medicines,” which include Jinhua Qinggan granule, Lianhua Qingwen capsule/granule, Xuebijing injection, Qingfei Paidu decoction, HuaShiBaiDu formula, and XuanFeiBaiDu granule, have been proven to be effective in curbing coronavirus disease 2019 (COVID-19), according to the State Administration of Traditional Chinese Medicine. The aims of this study were to identify the active components of “Three formulas and three medicines” that can be used to treat COVID-19, determine their mechanism of action via angiotensin-converting enzyme 2 (ACE2) by integrating network pharmacological approaches, and confirm the most effective components for COVID-19 treatment or prevention. We investigated all the compounds present in the aforementioned herbal ingredients. Compounds that could downregulate the transcription factors (TFs) of ACE2 and upregulate miRNAs of ACE2 were screened via a network pharmacology approach. Hepatocyte nuclear factor 4 alpha (HNF4A), peroxisome proliferator-activated receptor gamma (PPARG), hsa-miR-2113, and hsa-miR-421 were found to regulate ACE2. Several compounds, such as quercetin, decreased ACE2 expression by regulating the aforementioned TFs or miRNAs. After comparison with the compounds present in Glycyrrhiza Radix et Rhizoma, quercetin, glabridin, and gallic acid present in the herbal formulas and medicines were found to alter ACE2 expression. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used to search for possible molecular mechanisms of these compounds. In conclusion, traditional Chinese medicine (TCM) plays a pivotal role in the prevention and treatment of COVID-19. Quercetin, glabridin, and gallic acid, the active components of recommended TCM formulas and medicines, can inhibit COVID-19 by downregulating ACE2.


2020 ◽  
Author(s):  
Zhihong Huang ◽  
Siyu Guo ◽  
Changgeng Fu ◽  
Wei Zhou ◽  
Jingyuan Zhang ◽  
...  

Abstract Background: Xintong Granule (XTG) is a Chinese patent medicine composed of 13 Chinese herbs, which is widely used in the treatment of coronary heart disease (CHD). However, there are few studies on it, and its potential pharmacological mechanism needs to be further elucidated.Methods: In this study, network pharmacology was employed to construct the drug-compounds-targets-pathways molecular regulatory network of the treatment of CHD to explore the effective compounds of XTG and its underlying pharmacological mechanism. First, we established the related ingredients and potential targets of these ingredients databases by Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and A Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine (BATMAN-TCM). Next, the CHD targets were obtained in DigSee, OMIM, DisGeNET, TTD, GeneCards and GenCLiP3 database. Then, protein-protein interaction (PPI) analysis, GO and KEGG pathway enrichment analysis were carried out and the core targets were filtered by topology. Moreover, molecular docking was performed to assess the binding potential of hub targets and key compounds.Results: The result reflected that 178 components of XTG and 669 putative therapeutic targets were screened out. After a systematic and comprehensive analysis, we identified 9 hub targets (TNF, MAPK1, STAT3, IL6, AKT1, INS, EGFR, EGF, TP53) primarily participated in the comprehensive therapeutic effect related to blood circulation, vascular regulation, cell membrane region, compound binding, receptor activity, signal transduction, AGE-RAGE signaling pathway in diabetic complications, JAK-STAT signaling pathway, PI3K-AKT signaling pathway and MAPK signaling pathway.Conclusion: The results of this study tentatively clarified the potential targets and signaling pathways of XTG against CHD, which may benefit to the development of clinical experimental research and application.


2020 ◽  
Vol 23 (5) ◽  
pp. 419-432
Author(s):  
Yao Wang ◽  
Junbo Zou ◽  
Yanzhuo Jia ◽  
Yulin Liang ◽  
Xiaofei Zhang ◽  
...  

Aim and Objective: The common disease of insomnia has complex and diverse clinical manifestations. Lavender represents an effective treatment of insomnia, but the molecular mechanism underlying the effectiveness of this treatment is not clear. The purpose of this study is to investigate the active components, target proteins and molecular pathways of lavender in the treatment of insomnia, thus explaining its possible mechanism. Materials and Methods: Firstly, 54 active components of lavender were identified by gas chromatography-mass spectrometry (GC-MS). The target protein of lavender was predicted by the Traditional Chinese Medicine System Pharmacological Database and Analysis Platform and the SwissTargetPredicating tool, and the target protein of insomnia was predicted by the DisGeNET and DrugBank databases. Then, the "component-target-disease" network diagram was constructed using the Cytoscape 3.7.1 software. KEGG and GO enrichments were analyzed using the R statistical language. Finally, the key target proteins were verified by collecting and verifying the target protein GEO data using the Discovery Studio 3.5 molecular docking verification software. Results: 906 target proteins of lavender were predicted by the Traditional Chinese Medicine System Pharmacological Database and Analysis Platform and the SwissTargetPredicating tool, and 182 insomnia target proteins were predicted by the DisGeNET and DrugBank databases. The results of GO enrichment analysis showed that it included the reaction process of ammonium ion, the regulation of the membrane potential and the secretion of catecholamine, while the results of KEGG enrichment included the calcium signaling pathway, serotonin synapse, morphine addiction and many more. Finally, using the Discovery Studio3.5 molecular docking verification software, it was verified that the key target proteins are ADRB1 and HLA-DRB1. Conclusion: The components in the lavender essential oil include the Ethyl 2-(5-methyl-5-vinyltetrahydrofuran- 2-yl)propan-2-ylcarbonate (0.774); 5-Oxatricyclo[8.2.0.04,6]dodecane, 4,12,12-trimethyl- 9-methylene-, (1R,4R,6R,10S)-(0.147); P-Cymen-7-ol (0.063); .alpha-Humulenem (0.317); Acetic acid, hexyl ester (1.374); etc. The role lavender plays in the treatment of insomnia might be accomplished through the regulation of the key targets ADRB1 and HLA-DRB1.


Author(s):  
yifei Chen

Background Explore the possible mechanism of anti-influenza virus, based on the study of the active components-drug-target network, Protein-Protein Interaction (PPI) network and molecular docking verification, we explored the potential action mechanism of TCM in Chinese protocol for diagnosis and treatment of influenza 2019. Methods Screening the active components and potential targets of 12 drugs in the scheme by using TCMSP database, and Obtaining the target of influenza by GeneCard, Durgbank, OMIM, TTD and PharmGkb databases. Then, constructed the “component-durg-target” network and PPI network were by Cytoscape3.8.0 software. Morethan, analyzed and the biological function and pathway, verified the molecular docking by AutoDock Vina software. Results The 12 drugs in the recommended scheme (XBCQ) for severe influenza contain 192 active components and involve 31 key antiviral targets, which may play an antiviral role through biological processes such as lipopolysaccharide, pathogen molecular reaction and regulate signaling pathway via the IL-17, influenza A, TNF, Toll-like receptors. Conclusion TCM play critical therapeutic roles through “multi-components, multi-targets and multi-pathways” mechanisms in influenza infection. The antiviral pharmacological mechanism of Xuanbai Chengqi decoction, which was analyzed by network pharmacology and molecular docking, provide a new idea for further exploring the diagnosis and treatment of severe influenza.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiao-xiong Gan ◽  
Lin-kun Zhong ◽  
Fei Shen ◽  
Jian-hua Feng ◽  
Ya-yi Li ◽  
...  

Purpose:Prunella vulgaris (PV), a traditional Chinese medicine, has been used to treat patients with thyroid disease for centuries in China. The purpose of the present study was to investigate its bioactive ingredients and mechanisms against Hashimoto’s thyroiditis (HT) using network pharmacology and molecular docking technology to provide some basis for experimental research.Methods: Ingredients of the PV formula were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Additionally, HT-related genes were retrieved from the UniProt and GeneCards databases. Cytoscape constructed networks for visualization. A protein–protein interaction (PPI) network analysis was constructed, and a PPI network was built using the Search Tool for the Retrieval of Interacting Genes (STRING) database. These key targets of PV were enriched and analyzed by molecular docking verification, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment.Results: The compound–target network included 11 compounds and 66 target genes. Key targets contained Jun proto-oncogene (JUN), hsp90aa1.1 (AKI), mitogen-activated protein kinase 1 (MAPK1), and tumor protein p53 (TP53). The main pathways included the AGE-RAGE signaling pathway, the TNF signaling pathway, the PI3K–Akt signaling pathway, and the mitogen-activated protein kinase signaling pathway. The molecular docking results revealed that the main compound identified in the Prunella vulgaris was luteolin, followed by kaempferol, which had a strong affinity for HT.Conclusion: Molecular docking studies indicated that luteolin and kaempferol were bioactive compounds of PV and might play an essential role in treating HT by regulating multiple signaling pathways.


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Bin Liu ◽  
Xin Zheng ◽  
Jiajun Li ◽  
Xiong Li ◽  
Ruimei Wu ◽  
...  

Abstract Objective: The traditional Chinese medicine Caulis Sargentodoxae is widely used in the treatment of ulcerative colitis (UC), but the mechanism remains unknown. The present study aims to reveal its effective components, targets and pathways through network pharmacology and bioinformatics approaches. Materials and methods: Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) was used to identify effective components. The ligand-based targets prediction was achieved through SwissTargetPrediction and TargetNet. UC-related targets were identified using Gene Expression Omnibus (GEO) data and DisGeNET. The common targets of disease and components were constructed and analyzed by PPI network. Lastly, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses are used to explain the functions of these common targets. Components-Targets-Pathways network was visualized and analyzed to further reveal the connection between the components and targets. Results: Eight active components and 102 key targets were identified to play an important role in UC. These targets were related to regulation of protein serine/threonine kinase activity, positive regulation of cell motility, response to molecule of bacterial origin, response to toxic substance, ERK1 and ERK2 cascade, peptidyl-tyrosine modification, inositol lipid-mediated signaling, cellular response to drug, regulation of inflammatory response and leukocyte migration. Moreover, HIF-1 signaling pathway and PI3K-Akt signaling pathway were the key targets involved in UC-related signaling pathways. Conclusion: The eight active components of Caulis Sargentodoxae mainly play a therapeutic role for UC through synergistic regulation of HIF-1 signaling pathway and PI3K-Akt signaling pathway.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jinlong Zhao ◽  
Fangzheng Lin ◽  
Guihong Liang ◽  
Yanhong Han ◽  
Nanjun Xu ◽  
...  

ObjectiveTo explore the effective components and mechanism of Polygonati Rhizoma (PR) in the treatment of osteoporosis (OP) based on network pharmacology and molecular docking methods.MethodsThe effective components and predicted targets of PR were obtained through the Traditional Chinese Medicine Systems Pharmacology and Analysis Platform (TCMSP) database. The disease database was used to screen the disease targets of OP. The obtained key targets were uploaded to the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database for protein-protein interaction (PPI) network analysis. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of key targets. Analysis and docking verification of chemical effective drug components and key targets were performed with IGEMDOCK software.ResultsA total of 12 chemically active components, 84 drug target proteins and 84 common targets related to drugs and OP were obtained. Key targets such as JUN, TP53, AKT1, ESR1, MAPK14, AR and CASP3 were identified through PPI network analysis. The results of enrichment analysis showed that the potential core drug components regulate the HIF-1 signaling pathway, PI3K-Akt signaling pathway, estrogen signaling pathway and other pathways by intervening in biological processes such as cell proliferation and apoptosis and estrogen response regulation, with an anti-OP pharmacological role. The results of molecular docking showed that the key targets in the regulatory network have high binding activity to related active components.ConclusionsPR may regulate OP by regulating core target genes, such as JUN, TP53, AKT1, ESR1, AR and CASP3, and acting on multiple key pathways, such as the HIF-1 signaling pathway, PI3K-Akt signaling pathway, and estrogen signaling pathway.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuepeng Jiang ◽  
Xiaoxuan Zhao ◽  
Jie Yu ◽  
Qiao Wang ◽  
Chengping Wen ◽  
...  

Abstract Background Sha-Shen-Mai-Dong decoction (SSMD) is a classical prescription widely used in primary Sjogren’s Syndrome (pSS) therapy. This study aims to explore the potential pharmacological mechanism of SSMD on pSS. Methods Active components of SSMD were obtained from Traditional Chinese Medicine Integrative Database and Traditional Chinese Medicine Systems Pharmacology databases and targets of SSMD were predicted by Pharmmapper and STITCH database. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were carried out to explore the function characteristics of SSMD. The expression matrix of microarray of pSS was obtained from Gene Expression Omnibus and we obtained 162 differentially expressed genes (DEGs). Protein-protein interaction (PPI) networks were constructed to identify the hub targets. Principal component analysis (PCA) and molecular docking were conducted to further elucidate the possibility of SSMD for pSS. Results SSMD contained a total of 1056 active components, corresponding to 88 targets, among which peripheral myelin protein 2(PMP2), androgen receptor (AR) and glutamic acid decarboxylase 1(GAD1) are associated with multiple active components in SSMD and may be the core targets. Moreover, these targets were closely related to tissue pathological injury in SS, such as lacrimal gland, salivary gland and nervous system injury. GO and KEGG analysis showed that 88 targets enriched in REDOX process, transcriptional regulation and negative regulation of apoptosis process. Besides, SSMD may influence the cell proliferation, gene transcription through regulating Ras and cAMP-related signaling pathways. In addition, SSMD may show effects on immune regulation, such as macrophage differentiation, Toll-like receptor 4 signaling pathway and T-helper 1 in SS. Moreover, PPI network suggested that FN1, MMP-9 may be the hub targets in SSMD. Result of PCA and molecular docking analysis further determined the feasibility of SSMD in treating pSS. Conclusion SSMD can regulate multiple biological processes by virtue of its multiple active components, thus showing prominent advantage in the treatment of pSS. The discovery of active ingredients and targets in SSMD provides valuable resources for drug research and development for pSS.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Shuyue Wang ◽  
Fei Guo ◽  
Xiaochen Sun ◽  
Xiao Song ◽  
Yaohui Yuan ◽  
...  

Background. Hypertensive vascular remodeling (HVR) is the pathophysiological basis of hypertension, which is also an important cause of vascular disease and target organ damage. Treatment with Fructus Tribuli (FT), a traditional Chinese medicine, has a positive effect on HVR. However, the pharmacological mechanisms of FT are still unclear. Therefore, this study aimed to reveal the potential mechanisms involved in the effects of FT on HVR based on network pharmacology and molecular docking. Materials and Methods. We selected the active compounds and targets of FT according to the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the Swiss Target Prediction database, and the targets of HVR were collected from the Online Mendelian Inheritance in Man (OMIM), GeneCards, and DrugBank databases. The protein-protein interaction network (PPI) was established using the STRING database. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses and network analysis were performed to further explore the potential mechanisms. Finally, molecular docking methods were used to evaluate the affinity between the active compounds and the main target. Results. Seventeen active compounds of FT  and 164 potential targets for the treatment of HVR were identified. Component-target and PPI networks were constructed, and 12 main active components and 33 main targets were identified by analyzing the topological parameters. Additionally, GO analysis indicated that the potential targets were enriched in 483 biological processes, 52 cellular components, and 110 molecular functions. KEGG analysis revealed that the potential targets were correlated with 122 pathways, such as the HIF-1 signaling pathway, ErbB signaling pathway, and VEGF signaling pathway. Finally, molecular docking showed that the 12 main active components had a good affinity for the top five main targets. Conclusion. This study demonstrated the multiple compounds, targets, and pathway characteristics of FT in the treatment of HVR. The network pharmacology method provided a novel research approach to analyze potential mechanisms.


Sign in / Sign up

Export Citation Format

Share Document