scholarly journals Study of a Fractal-Fractional Smoking Models with Relapse and Harmonic Mean Type Incidence Rate

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zareen A. Khan ◽  
Mati ur Rahman ◽  
Kamal Shah

This manuscript investigates fractal-fractional order smoking models with relapse and harmonic mean type incidence rate under the Caputo derivative. We derive the existence and unique results about the solution for the considered model via fixed point theory. For the stability of the considered system, Ulam-Hyers (UH) approach is used. We compute the numerical solution by using fractional Adams-Bashforth method. For the simulation of the model, we consider different values of fractional order δ and fractal dimension θ by using some real values of the parameters. The proposed scheme is used to simulate the available data for some smoking community including potential, light, and quit smokers. Various graphical presentations are given to understand the dynamics of the model at various fractional orders.

Fractals ◽  
2021 ◽  
Author(s):  
HUSSAM ALRABAIAH ◽  
MATI UR RAHMAN ◽  
IBRAHIM MAHARIQ ◽  
SAMIA BUSHNAQ ◽  
MUHAMMAD ARFAN

In this paper, we consider a fractional mathematical model describing the co-infection of HBV and HCV under the non-singular Mittag-Leffler derivative. We also investigate the qualitative analysis for at least one solution and a unique solution by applying the approach fixed point theory. For an approximate solution, the technique of the iterative fractional order Adams–Bashforth scheme has been implemented. The simulation for the proposed scheme has been drawn at various fractional order values lying between (0,1) and integer-order of 1 via using Matlab. All the compartments have shown convergence and stability with time. A detailed comparative result has been given by the different fractional orders, which showed that the stability was achieved more rapidly at low orders.


2013 ◽  
Vol 29 (1) ◽  
pp. 125-132
Author(s):  
CLAUDIA ZAHARIA ◽  
◽  
DOREL MIHET ◽  

We establish stability results concerning the additive and quadratic functional equations in complete Menger ϕ-normed spaces by using fixed point theory. As particular cases, some theorems regarding the stability of functional equations in β - normed and quasi-normed spaces are obtained.


2017 ◽  
Vol 9 (2) ◽  
pp. 168781401769006 ◽  
Author(s):  
Devendra Kumar ◽  
Jagdev Singh ◽  
Maysaa Al Qurashi ◽  
Dumitru Baleanu

In this work, we aim to analyze the logistic equation with a new derivative of fractional order termed in Caputo–Fabrizio sense. The logistic equation describes the population growth of species. The existence of the solution is shown with the help of the fixed-point theory. A deep analysis of the existence and uniqueness of the solution is discussed. The numerical simulation is conducted with the help of the iterative technique. Some numerical simulations are also given graphically to observe the effects of the fractional order derivative on the growth of population.


2011 ◽  
Vol 61 (5) ◽  
Author(s):  
D. Miheţ ◽  
R. Saadati ◽  
S. Vaezpour

AbstractWe establish a stability result concerning the functional equation: $\sum\limits_{i = 1}^m {f\left( {mx_i + \sum\limits_{j = 1,j \ne i}^m {x_j } } \right) + f\left( {\sum\limits_{i = 1}^m {x_i } } \right) = 2f\left( {\sum\limits_{i = 1}^m {mx_i } } \right)} $ in a large class of complete probabilistic normed spaces, via fixed point theory.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ruofeng Rao ◽  
Shouming Zhong

This paper investigates the stochastically exponential stability of reaction-diffusion impulsive stochastic cellular neural networks (CNN). The reaction-diffusion pulse stochastic system model characterizes the complexity of practical engineering and brings about mathematical difficulties, too. However, the difficulties have been overcome by constructing a new contraction mapping and an appropriate distance on a product space which is guaranteed to be a complete space. This is the first time to employ the fixed point theorem to derive the stability criterion of reaction-diffusion impulsive stochastic CNN with distributed time delays. Finally, an example is provided to illustrate the effectiveness of the proposed methods.


2014 ◽  
Vol 64 (1) ◽  
Author(s):  
Dorel Miheţ ◽  
Reza Saadati

AbstractRecently, the authors [MIHEŢ, D.—SAADATI, R.—VAEZPOUR, S. M.: The stability of an additive functional equation in Menger probabilistic φ-normed spaces, Math. Slovaca 61 (2011), 817–826] considered the stability of an additive functional in Menger φ-normed spaces. In this paper, we establish some stability results concerning the cubic, quadratic and quartic functional equations in complete Menger φ-normed spaces via fixed point theory.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Xianghong Lai ◽  
Yutian Zhang

We firstly employ the fixed point theory to study the stability of cellular neural networks without delays and with time-varying delays. Some novel and concise sufficient conditions are given to ensure the existence and uniqueness of solution and the asymptotic stability of trivial equilibrium at the same time. Moreover, these conditions are easily checked and do not require the differentiability of delays.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Hong Gang Li ◽  
Yongqin Yang ◽  
Mao Ming Jin ◽  
Qinghua Zhang

By using ordered fixed point theory, we set up a new class of GNOVI structures (general nonlinear ordered variational inclusions) with(γG,λ)-weak-GRD mappings, discuss an existence theorem of solution, consider a perturbed Ishikawa iterative algorithm and the convergence of iterative sequences generated by the algorithm, and show the stability of algorithm for GNOVI structures in positive Hilbert spaces. The results in the instrument are obtained.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Shahram Rezapour ◽  
Hakimeh Mohammadi

Abstract We study the SEIR epidemic model for the spread of AH1N1 influenza using the Caputo–Fabrizio fractional-order derivative. The reproduction number of system and equilibrium points are calculated, and the stability of the disease-free equilibrium point is investigated. We prove the existence of solution for the model by using fixed point theory. Using the fractional Euler method, we get an approximate solution to the model. In the numerical section, we present a simulation to examine the system, in which we calculate equilibrium points of the system and examine the behavior of the resulting functions at the equilibrium points. By calculating the results of the model for different fractional order, we examine the effect of the derivative order on the behavior of the resulting functions and obtained numerical values. We also calculate the results of the integer-order model and examine their differences with the results of the fractional-order model.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Xiongrui Wang ◽  
Ruofeng Rao ◽  
Shouming Zhong

Linear matrices inequalities (LMIs) method and the contraction mapping theorem were employed to prove the existence of globally exponentially stable trivial solution for impulsive Cohen-Grossberg neural networks (CGNNs). It is worth mentioning that it is the first time to use the contraction mapping theorem to prove the stability for CGNNs while only the Leray-Schauder fixed point theorem was applied in previous related literature. An example is given to illustrate the effectiveness of the proposed methods due to the large allowable variation range of impulse.


Sign in / Sign up

Export Citation Format

Share Document