scholarly journals Chitosan-Derived Magnetic Nanomaterials: Synthesis, Characterization, and Nitrite Adsorption in Water

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Tong Liu ◽  
Jingyi Fu ◽  
Dongxia Gou ◽  
Yanbo Hu ◽  
Qilong Tang ◽  
...  

Nitrite is one of the main pollutants in the water worldwide. In this study, we have applied the reverse suspension crosslinking methodology based on chitosan (CS) and Fe3O4 (FeO) to synthesize the novel magnetic nanomaterial of chitosan (CS-FeO). The physical and chemical properties of CS-FeO were further characterized by scanning electron microscopy, particle size distribution, thermogravimetry, fluxgate magnetometer, Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, and energy dispersive spectroscopy. Results revealed that CS-FeO showed high thermal stability in the temperature ranging from 50 to 200°C. CS-FeO showed high crystallinity and magnetism and was easily and quickly separated from aqueous solution in the presence of an external magnetic field. The molecular structure of CS-FeO showed that the core-shell structure of CS-FeO was established with FeO as the core and CS as the shell. Furthermore, the adsorption rate of nitrite by CS-FeO reached 65.83 ± 0.76 % under optimal conditions. Moreover, CS-FeO showed high regeneration capability with Na2SO4 used as the eluent. Our study demonstrated evidently that CS-FeO can be potentially used to remove nitrite from drinking water sources and industrial wastewater, suggesting the promising future of the application of CS-derived magnetic nanomaterials in the areas of environmental protections.

2019 ◽  
Vol 17 (1) ◽  
pp. 1459-1465
Author(s):  
Xuedong Feng ◽  
Jing Yi ◽  
Peng Luo

AbstractWith the purpose of studying the influence of NO/O2 on the NOx storage activity, a Pt-Ba-Ce/γ-Al2O3 catalyst was synthesized by an acid-aided sol-gel method. The physical and chemical properties of the catalyst were characterized by X-ray diffraction (XRD) and Transmission Electron Microscope (TEM) methods. The results showed that the composition of the catalyst was well-crystallized and the crystalline size of CeO2 (111) was about 5.7 nm. The mechanism of NO and NO2 storage and NOx temperature programmed desorption (NO-TPD) experiments were investigated to evaluate the NOx storage capacity of the catalyst. Pt-Ba-Ce/γ-Al2O3 catalyst presented the supreme NOx storage performance at 350℃, and the maximum value reached to 668.8 μmol / gcat. Compared with O2-free condition, NO oxidation to NO2 by O2 had a beneficial effect on the storage performance of NOx. NO-TPD test results showed that the NOx species stored on the catalyst surface still kept relatively stable even below 350℃.


1987 ◽  
Vol 113 ◽  
Author(s):  
Scott Schlorholtz ◽  
Ken Bergeson ◽  
Turgut Demirel

ABSTRACTThe physical and chemical properties of fly ash produced at Ottumwa Generating Station have been monitored since April, 1985. The fly ash is produced from burning a low sulfur, sub-bituminous coal obtained from the Powder River Basin near Gillette, Wyoming. One-hundred and sixty samples of fly ash were obtained during the two year period. All of the samples were subjected to physical testing as specified by ASTM C 311. About one-hundred of the samples were also subjected to a series of tests designed to monitor the self-cementing properties of the fly ash. Many of the fly ash samples were subjected to x-ray diffraction and fluorescence analysis to define the mineralogical and chemical composition of the bulk fly ash as a function of sampling date. Hydration products in selected hardened fly ash pastes, were studied by x-ray diffraction and scanning electron microscopy. The studies indicated that power plant operating conditions influenced the compressive strength of the fly ash paste specimens. Mineralogical and morphological studies of the fly ash pastes indicated that stratlingite formation occurred in the highstrength specimens, while ettringite was the major hydration product evident in the low-strength specimens.


2016 ◽  
Vol 869 ◽  
pp. 578-584 ◽  
Author(s):  
Armando Cirilo Souza ◽  
J.L. Rossi ◽  
P. Tsakiropoulos ◽  
L.G. Martinez ◽  
Carlos Roberto Grandini ◽  
...  

Zirconium alloys have many applications in industry in services too harsh for stainless steels, nickel alloys or where a noteworthy improvement in service life may be achieved, by choosing zirconium alloys instead of other metals, such as high permeability to thermal neutrons and excellent corrosion resistance in nuclear reactor environments. Mixing alloying elements, such as niobium, molybdenum, tin, titanium and tantalum, with zirconium changes its physical and chemical properties, especially its resistance to corrosion. In this study, specimens of Zr-1.0Nb alloy were obtained by melting in a furnace with non-consumable electrodes in argon atmosphere. Different samples were prepared to ensure good homogeneity of the specimens. The melting procedure was tested several times to determine the parameters that ensure proper alloy handling. These parameters include the melting point of the alloys under pressure and the current in the furnace. Using the derived melting parameters and processing parameters, it has been obtained Zr-1.0Nb alloy specimens with appropriate homogeneity, as confirmed by auxiliary characterization techniques, such as optical microscopy, scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. For these methods, the requirements for physicochemical properties in the nuclear sector were incorporated into the analyses.


1989 ◽  
Vol 135 ◽  
pp. 345-356
Author(s):  
J. Mayo Greenberg

Historically there have been two different types of grain modelling: One of these basically uses particle populations which evolve essentially by coagulation (e. g., the MRN model: Mathis, Rumpl and Nordsieck, 1977); the other considers the physical and chemical evolution of the particles with a particular emphasis on changes not only in sizes but also in chemical and morphological structure (e. g. Greenberg, 1978; Williams, 1989). The model of Oort and van de Hulst (1946) was the first to consider that grains must evolve in interstellar space by treating both growth and destruction in clouds. The chemical properties had already been derived by van de Hulst (1946) and then later described as the dirty ice model which consisted of the saturated molecules H2O, CH4 and NH3 with trace constituents of other atoms and molecules resulting from surface reactions of atoms on the grains. How such grains could nucleate was left as an unsolved problem but the fact that, once formed, there did not seem to be any reason why they should not grow until they exhausted the condensable atoms in the gas led to the suggestion that a limiting destructive mechanism must be provided. This was assumed to be by grain-grain collisions within clouds moving at relative speeds of 10 km s−1. We thus had the first dynamical theory leading to a steady state distribution of grain sizes. This model provided for me the starting point of the core-mantle model of grains. The observations of the 60's and henceforth clearly showed the existence of other types of small particles, which have been invoked to explain the 2200 å hump (Stecher and Donn, 1965), the far ultraviolet (FUV) extinction (Greenberg and Chlewicki, 1983), and now certain infrared emission features. These other components notwithstanding, grains still account for the major fraction of the solid particle mass in space.


2019 ◽  
Vol 942 ◽  
pp. 40-49
Author(s):  
Yulia Murashkina ◽  
Olga B. Nazarenko

Natural zeolite of Shivirtui deposit (Russia) was modified with nanofibers of aluminum oxyhydroxide AlOOH. Aluminum oxyhydroxide nanofibers were produced at the heating and oxidation of aluminum powder with water. The properties of modified zeolite were investigated by means of X-ray diffraction, transmission electronic microscopy, scanning electronic microscopy, low-temperature nitrogen adsorption, thermal analysis, and Fourier transform infrared spectroscopy. It was found that water content in the modified sample of zeolite was about 15 %. Based on the study of the physical and chemical properties, shivirtui zeolite modified with nanofibers of aluminum oxyhydroxide can be proposed for use as a flame-retardant additive to polymers.


2000 ◽  
Vol 88 (9-11) ◽  
Author(s):  
S.L. Matzen ◽  
J.M. Beiriger ◽  
P.C. Torretto ◽  
P. Zhao ◽  
B.E. Viani

In a high level waste repository in which temperatures are elevated due to waste decay, concrete structures will be subjected to hydrothermal conditions that will alter their physical and chemical properties. Virtually no studies have examined the interaction of hydrothermally altered concrete with radionuclides. We present the results of experiments in which soluble and colloid-associated U and Np, were eluted into a fractured, hydrothermally altered concrete core. Although the fluid residence time in the fracture was estimated to be on the order of 1 minute, U and Np in the effluent from the core were below detection (10


2019 ◽  
Vol 72 (10) ◽  
pp. 797 ◽  
Author(s):  
Witold M. Bloch ◽  
Christian J. Doonan ◽  
Christopher J. Sumby

Understanding the key features that determine structural flexibility in metal–organic frameworks (MOFs) is key to exploiting their dynamic physical and chemical properties. We have previously reported a 2D MOF material, CuL1, comprising five-coordinate metal nodes that displays exceptional CO2/N2 selectively (L1=bis(4-(4-carboxyphenyl)-1H-pyrazolyl)methane). Here we examine the effect of utilising six-coordinate metal centres (CoII and NiII) in the synthesis of isostructural MOFs from L1, namely CoL1 and NiL1. The octahedral geometry of the metal centre within the MOF analogues precludes an ideal eclipse of the 2D layers, resulting in an offset stacking, and in certain cases, the formation of 2-fold interpenetrated analogues β-CoL1 and β-NiL1. We used a combination of thermogravimetric analysis (TGA), and powder and single crystal X-ray diffraction (PXRD and SCXRD) to show that desolvation is accompanied by a structural change for NiL1, and complete removal of the coordinated H2O ligands results in a reduction in long-range order. The offset nature of the 2D layers in combination with the structural changes impedes the adsorption of meaningful quantities of gases (N2, CO2), highlighting the importance of a five-coordinate metal centre in achieving optimal pore accessibility for this family of flexible materials.


Author(s):  
M. Mansouri ◽  
A. Hosseinvand ◽  
T. Kikhavani ◽  
N. Setareshenas

Abstract In this study, photo-catalytic degradation of methyl orange (MO) azo dye was examined by undoped and Ce2O3/ CuO/ N doped ZnO nanoparticles stabilized on γAl2O3. Highest photo-catalytic activity was observed for the N-doped 10 wt. % ZnO-γAl2O3 sample. One of the optimal points with the complete MO decomposition was determined at an initial concentration of 8.25 ppm, pH 3.25, catalyst loading of 0.36 g/L and 12.56 W UV-light irradiation after 120 min. Physical and chemical properties of materials were investigated by X-ray diffraction analysis (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) and UV–visible diffuse reflectance spectroscopy (DRS) method. The experimental data were best fitted by a Langmuir-Hinshelwood approach photo-catalysis developed kinetic reaction rate in the form of $- r = 0.2797\, {I^{0.5}}\, {[Cat.]^{0.5}}\, \, [Dye]{\text{ }}/\, \, \, 1 + 0.1079\, {[Dye]_0}\, + \, 0.4086\, {I^{0.5}}\, {[Cat.]^{0.5}}$.


2007 ◽  
Vol 361-363 ◽  
pp. 463-466
Author(s):  
T. Lin ◽  
S.M. Zhang ◽  
J. Li ◽  
L. Zhang ◽  
Y.H. Liu ◽  
...  

The composite scaffolds with nine different ratios of nano-HA and ß-TCP content were fabricated by using lyophilization method. Their microscopy, physical and chemical properties were investigated by using scanning electron microscopy (SEM), X-ray diffraction (XRD), and fourier transformed infrared (FTIR) spectroscopy. MTT test was applied to quantitatively assess the number of viable cells attached and grown on the scaffolds. And the result showed that the amount of cells on the scaffold containing 30% by mass of nano-HA was significantly higher than the other samples.


Sign in / Sign up

Export Citation Format

Share Document