scholarly journals Micropore Characteristics and Geological Significance of Shale Reservoirs: Case Study of Fuling Shale Gas in Sichuan Basin, China

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Liang Cheng ◽  
Fujia Guan ◽  
Dehua Liu ◽  
Wenxin Yang ◽  
Jing Sun

Several techniques (such as scanning electron microscopy (SEM) and gas adsorption systems) have been used to study the pore features and structures of shale reservoirs. The available methods and techniques have restricted the specific research on micropores, and the morphology, genesis, volume, and main factors controlling pore characteristics are yet to be analyzed. Currently, there is no systematic understanding of the role that these spaces play in gas storage and flow. As such, our understanding of the spatial connectivity of pores and reserves of shale reservoirs is limited. In this study, the pores of the Fuling shale gas reservoir in the Sichuan Basin were systematically observed by SEM and transmission electron microscopy. Images of pores smaller than 2 nm were captured for the first time, and their morphology and genesis were analyzed by combining these images with the rock mineralogy theory. The pore size distribution characteristics of the reservoir were analyzed by the adsorption-mercury injection method and nuclear magnetic resonance, and the main factors controlling the distribution of different pore sizes were analyzed. The results show that large numbers of micropores were distributed between the mesopores and macropores in the shale reservoir, which mainly consisted intergranular pores, intermolecular pores, interlamellar pores of clay minerals, and organic matter skeleton pores. The development of pores smaller than 1 nm was mainly controlled by the clay mineral content, and the development of pores with a size of approximately 1-2 nm was related to the contents of clay minerals and organic matter. These pores could connect the macropores and mesopores well, which is important for gas storage and flow. In this paper, the types, distribution, and main controlling factors of micropores were studied, and our understanding of the reservoir space was improved from the nanometer level to the Angstrom level, which is important for gas storage and flow process analysis.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xianglu Tang ◽  
Wei Wu ◽  
Guanghai Zhong ◽  
Zhenxue Jiang ◽  
Shijie He ◽  
...  

Adsorbed gas is an important component of shale gas. The methane adsorption capacity of shale determines the composition of shale gas. In this study, the methane adsorption capacity of marine, transitional, and lacustrine shales in the Sichuan Basin was analyzed through its isothermal adsorption, mineral composition, water content, etc. The results show that the methane adsorption capacity of marine (Qiongzhusi Formation and Longmaxi Formation), transitional (Longtan Formation), and lacustrine (Xujiahe Formation and Ziliujing Formation) shales is significantly different. The Longtan Formation has the strongest methane adsorption capacity. This is primarily related to its high organic matter and organic matter type III content. The methane adsorption capacity of the lacustrine shale was the weakest. This is primarily related to the low thermal evolution degree and the high content of water-bearing clay minerals. Smectite has the highest methane adsorption capacity of the clay minerals, due to its crystal structure. The water content has a significant effect on methane adsorption largely because water molecules occupy the adsorption site. Additionally, the temperature and pressure in a specific range significantly affect methane adsorption capacity.


Author(s):  
Zhazha Hu ◽  
Garri Gaus ◽  
Timo Seemann ◽  
Qian Zhang ◽  
Ralf Littke ◽  
...  

Abstract The shale gas potential of Ediacaran and Lower Silurian shales from the Upper Yangtze platform is assessed in this study with a focus on the contributions of clay minerals and organic matter to sorption capacity. For this purpose, a multidisciplinary assessment was carried out using petrophysical, mineralogical, petrographic and geochemical methods. In terms of TOC contents (4.2%), brittle mineral contents (68.6%) and maximum gas storage capacities (0.054–0.251 mmol/g) Ediacaran shales from this study show comparable properties to other producing shale gas systems although the thermal maturity is extremely high (VRr = 3.6%). When compared to lower Silurian shales from the same region, it is evident that (1) deeper maximum burial and (2) a lack of silica-associated preservation of the pores resulted in a relatively lower mesopore volume, higher micropore volume fraction and lower overall porosity (Ediacaran shales: 1.4–4.6%; Silurian shales: 6.2–7.4%). Gas production is therefore retarded by poor interconnectivity of the pore system, which was qualitatively demonstrated by comparing experimental gas uptake kinetics. TOC content exhibits a prominent control on sorption capacity and micropore volume for both shales. However, different contributions of clay minerals to sorption capacity were identified. This can partly be attributed to different clay types but is likely also related to burial-induced recrystallisation and different origins of illite. Additionally, it was shown that variations in sorption capacity due to incorrect estimates of clay mineral contribution are in the same range as variations due to differences in thermal maturity. Article highlights Pore structure and gas storage characteristics are evaluated for the first time for Ediacaran Shales from the Upper Yangtze platform Due to a lower free gas storage capacity and diffusivity, the Ediacaran shale can be regarded as a less favorable shale gas prospect when compared to the Silurian shale Clay mineral contribution to sorption capacity is evaluated taking clay mineralogy into consideration Maturity-related changes of organic matter sorption capacity have been discussed on the basis of a compiled data set


2018 ◽  
Vol 37 (6) ◽  
pp. 791-804 ◽  
Author(s):  
Yuantao Gu ◽  
Quan Wan ◽  
Wenbin Yu ◽  
Xiaoxia Li ◽  
Zhongbin Yu

2015 ◽  
Vol 153 (4) ◽  
pp. 663-680 ◽  
Author(s):  
WENLONG DING ◽  
PENG DAI ◽  
DINGWEI ZHU ◽  
YEQIAN ZHANG ◽  
JIANHUA HE ◽  
...  

AbstractFractures are important for shale-gas reservoirs with low matrix porosity because they increase the effective reservoir space and migration pathways for shale gas, thus favouring an increased volume of free gas and the adsorption of gases in shale reservoirs, and they increase the specific surface area of gas-bearing shales which improves the adsorption capacity. We discuss the characteristics and dominant factors of fracture development in a continental organic matter-rich shale reservoir bed in the Yanchang Formation based on observations and descriptions of fracture systems in outcrops, drilling cores, cast-thin sections and polished sections of black shale from the Upper Triassic Yanchang Formation in the SE Ordos Basin; detailed characteristics and parameters of fractures; analyses and tests of corresponding fracture segment samples; and the identification of fracture segments with normal logging. The results indicate that the mineral composition of the continental organic-matter-rich shale in the Yanchang Formation is clearly characterized by a low brittle mineral content and high clay mineral content relative to marine shale in the United States and China and Mesozoic continental shale in other basins. The total content of brittle minerals, such as quartz and feldspar, is c. 41%, with quartz and feldspar accounting for 22% and 19% respectively, and mainly occurring as plagioclase with small amounts of carbonate rocks. The total content of clay minerals is high at up to 52%, and mainly occurs as a mixed layer of illite-smectite (I/S) which accounts for more than 58% of the total clay mineral content. The Upper Triassic Yanchang Formation developed two groups of fracture (joint) systems: a NW–SE-trending system and near-E–W-trending system. Multiple types of fractures are observed, and they are mainly horizontal bedding seams and low-dip-angle structural fractures. Micro-fractures are primarily observed in or along organic matter bands. Shale fractures were mainly formed during Late Jurassic – late Early Cretaceous time under superimposed stress caused by regional WNW–ESE-trending horizontal compressive stress and deep burial effects. The extent of fracture development was mainly influenced by multiple factors (tectonic factors and non-tectonic factors) such as the lithology, rock mechanical properties, organic matter abundance and brittle mineral composition and content. Specifically, higher sand content has been observed to correspond to more rapid lithological changes and more extensive fracture development. In addition, higher organic matter content has been observed to correspond to greater fracture development, and higher quartz, feldspar and mixed-layer I/S contents have been observed to correspond to more extensive micro-fracture development. These results are consistent with the measured mechanical properties of the shale and silty shale, the observations of fractures in cores and thin-sections from more than 20 shale-gas drilling wells, and the registered anomalies from gas logging.


2020 ◽  
Vol 55 (4) ◽  
pp. 3083-3096
Author(s):  
Ning Wang ◽  
Meijun Li ◽  
Xingwang Tian ◽  
Haitao Hong ◽  
Peng Liu ◽  
...  

Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 137
Author(s):  
Guochang Wang ◽  
Shengxiang Long ◽  
Yongmin Peng ◽  
Yiwen Ju

Heterogeneity of organic matter (OM), including size, type, and organic pores within OM, is being recognized along with increasing study using SEM images. Especially, the contribution of organic pores to the entire pore system should be better understood to aid in the evaluation of shale reservoirs. This research observed and quantitatively analyzed over 500 SEM images of 19 core samples from Longmaxi-Wufeng Shale in the eastern Sichuan Basin to summarize the features of OM particles and OM-hosted pores and their evolution during burial. The features of organic pores as well as the embedded minerals within OM particles enables to recognize four different type of OM particles. The organic pore features of each type of OM particles were quantitatively described using parameters such as pore size distribution (PSD), pore geometry, and organic porosity. The PSD of weakly or undeformed porous pyrobitumen indicates that the large organic pores (usually 200 nm to 1 um) is less common than small pores but the major contributor to organic porosity. The organic porosity of OM particles covers a large range of 1–35%, indicating a high heterogeneity among OM particles. Based on analysis of 81 OM particles, the average of organic porosity of the five samples were calculated and ranges from 3% to 12%. In addition, samples from well JY1 have higher organic porosity than JY8. These results helped to reveal how significant the organic pores are for shale gas reservoirs. In addition to presenting many examples of OM particles, this research should significantly improve the understanding of type and evolution of OM particles and contribution of OM-hosted pores to the entire pore system of high to over mature shale.


Minerals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 543 ◽  
Author(s):  
Wang ◽  
Jiang ◽  
Jiang ◽  
Chang ◽  
Zhu ◽  
...  

Pore structure determines the gas occurrence and storage properties of gas shale and is a vital element for reservoir evaluation and shale gas resources assessment. Field emission scanning electron microscopy (FE‐SEM), high‐pressure mercury intrusion porosimetry (HMIP), and low‐pressure N2/CO2 adsorption were used to qualitatively and quantitatively characterize full‐scale pore structure of Longmaxi (LM) shale from the southern Sichuan Basin. Fractal dimension and its controlling factors were also discussed in our study. Longmaxi shale mainly developed organic matter (OM) pores, interparticle pores, intraparticle pores, and microfracture, of which the OM pores dominated the pore system. The pore diameters are mainly distributed in the ranges of 0.4–0.7 nm, 2–20 nm and 40–200 μm. Micro‐, meso‐ and macropores contribute 24%, 57% and 19% of the total pore volume (PV), respectively, and 64.5%, 34.6%, and 0.9% of the total specific surface area (SSA). Organic matter and clay minerals have a positive contribution to pore development. While high brittle mineral content can inhibit shale pore development. The fractal dimensions D1 and D2 which represents the roughness of the shale surface and irregularity of the space structure, respectively, are calculated based on N2 desorption data. The value of D1 is in the range of 2.6480–2.7334 (average of 2.6857), D2 is in the range of 2.8924–2.9439 (average of 2.9229), which indicates that Longmaxi shales have a rather irregular pore morphology as well as complex pore structure. Both PV and SSA positively correlated with fractal dimensions D1 and D2. The fractal dimension D1 decreases with increasing average pore diameter, while D2 is on the contrary. These results suggest that the small pores have a higher roughness surface, while the larger pores have a more complex spatial structure. The fractal dimensions of shale are jointly controlled by OM, clays and brittle minerals. The TOC content is the key factor which has a positive correlation with the fractal dimension. Clay minerals have a negative influence on fractal dimension D1, and positive influence D2, while brittle minerals show an opposite effect compared with clay minerals.


Sign in / Sign up

Export Citation Format

Share Document