scholarly journals Hybrid Convolutional Neural Network for Localization of Epileptic Focus Based on iEEG

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Linfeng Sui ◽  
Xuyang Zhao ◽  
Qibin Zhao ◽  
Toshihisa Tanaka ◽  
Jianting Cao

Epileptic focus localization by analysing intracranial electroencephalogram (iEEG) plays a critical role in successful surgical therapy of resection of the epileptogenic lesion. However, manual analysis and classification of the iEEG signal by clinicians are arduous and time-consuming and excessively depend on the experience. Due to individual differences of patients, the iEEG signal from different patients usually shows very diverse features even if the features belong to the same class. Accordingly, automatic detection of epileptic focus is required to improve the accuracy and to shorten the time for treatment. In this paper, we propose a novel feature fusion-based iEEG classification method, a deep learning model termed Time-Frequency Hybrid Network (TF-HybridNet), in which short-time Fourier transform (STFT) and 1d convolution layers are performed on the input iEEG in parallel to extract features of the time-frequency domain and feature maps. And then, the time-frequency features and feature maps are fused and fed to a 2d convolutional neural network (CNN). We used the Bern-Barcelona iEEG dataset for evaluating the performance of TF-HybridNet, and the experimental results show that our approach is able to differentiate the focal from nonfocal iEEG signal with an average classification accuracy of 94.3% and demonstrates an improved accuracy rate compared to the model using only STFT or one-dimensional convolutional layers as feature extraction.

10.29007/9jmg ◽  
2020 ◽  
Author(s):  
Xuyang Zhao ◽  
Linfeng Sui ◽  
Toshihisa Tanaka ◽  
Jianting Cao ◽  
Qibin Zhao

Patients with epilepsy need to locate the lesion before surgery. Currently, clinical experts diagnose the lesions through visual judgment. In order to reduce the workload of clinical experts, many automatic diagnostic methods have been proposed. Usually, the automatic diagnostic methods often use only one feature as the basis for diagnosis, which has certain limitations. In this paper, we use multiple feature fusion methods for automatic diagnosis. For the cause of epilepsy: abnormal discharge, we use the filter and entropy to capture the energy features of epilepsy discharge. Due to the epilepsy brain waves contain spike and shape waveforms, short time Fourier transform (STFT) is used to analysis the time-frequency features. In feature fusion, we plot the color map of entropy and spectrogram get from STFT together to combine the different types of features. After the feature extraction and fusion steps, each brain signal is converted into an image. Next, we use the visual analysis capabilities of the convolutional neural network (CNN) to classify the plot image. With the visual recognition ability of CNN, in the experiment, we got a classification accuracy of 88.77%. By using automatic diagnostic methods, the workload of clinical experts is greatly reduced in actual clinical practice.


Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 102
Author(s):  
Michele Lo Giudice ◽  
Giuseppe Varone ◽  
Cosimo Ieracitano ◽  
Nadia Mammone ◽  
Giovanbattista Gaspare Tripodi ◽  
...  

The differential diagnosis of epileptic seizures (ES) and psychogenic non-epileptic seizures (PNES) may be difficult, due to the lack of distinctive clinical features. The interictal electroencephalographic (EEG) signal may also be normal in patients with ES. Innovative diagnostic tools that exploit non-linear EEG analysis and deep learning (DL) could provide important support to physicians for clinical diagnosis. In this work, 18 patients with new-onset ES (12 males, 6 females) and 18 patients with video-recorded PNES (2 males, 16 females) with normal interictal EEG at visual inspection were enrolled. None of them was taking psychotropic drugs. A convolutional neural network (CNN) scheme using DL classification was designed to classify the two categories of subjects (ES vs. PNES). The proposed architecture performs an EEG time-frequency transformation and a classification step with a CNN. The CNN was able to classify the EEG recordings of subjects with ES vs. subjects with PNES with 94.4% accuracy. CNN provided high performance in the assigned binary classification when compared to standard learning algorithms (multi-layer perceptron, support vector machine, linear discriminant analysis and quadratic discriminant analysis). In order to interpret how the CNN achieved this performance, information theoretical analysis was carried out. Specifically, the permutation entropy (PE) of the feature maps was evaluated and compared in the two classes. The achieved results, although preliminary, encourage the use of these innovative techniques to support neurologists in early diagnoses.


2021 ◽  
Author(s):  
Guofa Li ◽  
Yanbo Wang ◽  
Jialong He ◽  
Yongchao Huo

Abstract Tool wear during machining has a great influence on the quality of machined surface and dimensional accuracy. Tool wear monitoring is extremely important to improve machining efficiency and workpiece quality. Multidomain features (time domain, frequency domain and time-frequency domain) can accurately characterise the degree of tool wear. However, manual feature fusion is time consuming and prevents the improvement of monitoring accuracy. A new tool wear prediction method based on multidomain feature fusion by attention-based depth-wise separable convolutional neural network is proposed to solve these problems. In this method, multidomain features of cutting force and vibration signals are extracted and recombined into feature tensors. The proposed hypercomplex position encoding and high dimensional self-attention mechanism are used to calculate the new representation of input feature tensor, which emphasizes the tool wear sensitive information and suppresses large area background noise. The designed depth-wise separable convolutional neural network is used to adaptively extract high-level features that can characterize tool wear from the new representation, and the tool wear is predicted automatically. The proposed method is verified on three sets of tool run-to-failure data sets of three-flute ball nose cemented carbide tool in machining centre. Experimental results show that the prediction accuracy of the proposed method is remarkably higher than other state-of-art methods. Therefore, the proposed tool wear prediction method is beneficial to improve the prediction accuracy and provide effective guidance for decision making in processing.


2020 ◽  
Vol 10 (5) ◽  
pp. 1023-1032
Author(s):  
Lin Qi ◽  
Haoran Zhang ◽  
Xuehao Cao ◽  
Xuyang Lyu ◽  
Lisheng Xu ◽  
...  

Accurate segmentation of the blood pool of left ventricle (LV) and myocardium (or left ventricular epicardium, MYO) from cardiac magnetic resonance (MR) can help doctors to quantify LV ejection fraction and myocardial deformation. To reduce doctor’s burden of manual segmentation, in this study, we propose an automated and concurrent segmentation method of the LV and MYO. First, we employ a convolutional neural network (CNN) architecture to extract the region of interest (ROI) from short-axis cardiac cine MR images as a preprocessing step. Next, we present a multi-scale feature fusion (MSFF) CNN with a new weighted Dice index (WDI) loss function to get the concurrent segmentation of the LV and MYO. We use MSFF modules with three scales to extract different features, and then concatenate feature maps by the short and long skip connections in the encoder and decoder path to capture more complete context information and geometry structure for better segmentation. Finally, we compare the proposed method with Fully Convolutional Networks (FCN) and U-Net on the combined cardiac datasets from MICCAI 2009 and ACDC 2017. Experimental results demonstrate that the proposed method could perform effectively on LV and MYOs segmentation in the combined datasets, indicating its potential for clinical application.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1248
Author(s):  
Rafia Nishat Toma ◽  
Cheol-Hong Kim ◽  
Jong-Myon Kim

Condition monitoring is used to track the unavoidable phases of rolling element bearings in an induction motor (IM) to ensure reliable operation in domestic and industrial machinery. The convolutional neural network (CNN) has been used as an effective tool to recognize and classify multiple rolling bearing faults in recent times. Due to the nonlinear and nonstationary nature of vibration signals, it is quite difficult to achieve high classification accuracy when directly using the original signal as the input of a convolution neural network. To evaluate the fault characteristics, ensemble empirical mode decomposition (EEMD) is implemented to decompose the signal into multiple intrinsic mode functions (IMFs) in this work. Then, based on the kurtosis value, insignificant IMFs are filtered out and the original signal is reconstructed with the rest of the IMFs so that the reconstructed signal contains the fault characteristics. After that, the 1-D reconstructed vibration signal is converted into a 2-D image using a continuous wavelet transform with information from the damage frequency band. This also transfers the signal into a time-frequency domain and reduces the nonstationary effects of the vibration signal. Finally, the generated images of various fault conditions, which possess a discriminative pattern relative to the types of faults, are used to train an appropriate CNN model. Additionally, with the reconstructed signal, two different methods are used to create an image to compare with our proposed image creation approach. The vibration signal is collected from a self-designed testbed containing multiple bearings of different fault conditions. Two other conventional CNN architectures are compared with our proposed model. Based on the results obtained, it can be concluded that the image generated with fault signatures not only accurately classifies multiple faults with CNN but can also be considered as a reliable and stable method for the diagnosis of fault bearings.


Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 119
Author(s):  
Tao Wang ◽  
Changhua Lu ◽  
Yining Sun ◽  
Mei Yang ◽  
Chun Liu ◽  
...  

Early detection of arrhythmia and effective treatment can prevent deaths caused by cardiovascular disease (CVD). In clinical practice, the diagnosis is made by checking the electrocardiogram (ECG) beat-by-beat, but this is usually time-consuming and laborious. In the paper, we propose an automatic ECG classification method based on Continuous Wavelet Transform (CWT) and Convolutional Neural Network (CNN). CWT is used to decompose ECG signals to obtain different time-frequency components, and CNN is used to extract features from the 2D-scalogram composed of the above time-frequency components. Considering the surrounding R peak interval (also called RR interval) is also useful for the diagnosis of arrhythmia, four RR interval features are extracted and combined with the CNN features to input into a fully connected layer for ECG classification. By testing in the MIT-BIH arrhythmia database, our method achieves an overall performance of 70.75%, 67.47%, 68.76%, and 98.74% for positive predictive value, sensitivity, F1-score, and accuracy, respectively. Compared with existing methods, the overall F1-score of our method is increased by 4.75~16.85%. Because our method is simple and highly accurate, it can potentially be used as a clinical auxiliary diagnostic tool.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Bambang Tutuko ◽  
Siti Nurmaini ◽  
Alexander Edo Tondas ◽  
Muhammad Naufal Rachmatullah ◽  
Annisa Darmawahyuni ◽  
...  

Abstract Background Generalization model capacity of deep learning (DL) approach for atrial fibrillation (AF) detection remains lacking. It can be seen from previous researches, the DL model formation used only a single frequency sampling of the specific device. Besides, each electrocardiogram (ECG) acquisition dataset produces a different length and sampling frequency to ensure sufficient precision of the R–R intervals to determine the heart rate variability (HRV). An accurate HRV is the gold standard for predicting the AF condition; therefore, a current challenge is to determine whether a DL approach can be used to analyze raw ECG data in a broad range of devices. This paper demonstrates powerful results for end-to-end implementation of AF detection based on a convolutional neural network (AFibNet). The method used a single learning system without considering the variety of signal lengths and frequency samplings. For implementation, the AFibNet is processed with a computational cloud-based DL approach. This study utilized a one-dimension convolutional neural networks (1D-CNNs) model for 11,842 subjects. It was trained and validated with 8232 records based on three datasets and tested with 3610 records based on eight datasets. The predicted results, when compared with the diagnosis results indicated by human practitioners, showed a 99.80% accuracy, sensitivity, and specificity. Result Meanwhile, when tested using unseen data, the AF detection reaches 98.94% accuracy, 98.97% sensitivity, and 98.97% specificity at a sample period of 0.02 seconds using the DL Cloud System. To improve the confidence of the AFibNet model, it also validated with 18 arrhythmias condition defined as Non-AF-class. Thus, the data is increased from 11,842 to 26,349 instances for three-class, i.e., Normal sinus (N), AF and Non-AF. The result found 96.36% accuracy, 93.65% sensitivity, and 96.92% specificity. Conclusion These findings demonstrate that the proposed approach can use unknown data to derive feature maps and reliably detect the AF periods. We have found that our cloud-DL system is suitable for practical deployment


Sign in / Sign up

Export Citation Format

Share Document