scholarly journals A Risk Signature with Nine Stemness Index-Associated Genes for Predicting Survival of Patients with Uterine Corpus Endometrial Carcinoma

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Haoya Xu ◽  
Ruoyao Zou ◽  
Jiyu Liu ◽  
Liancheng Zhu

Purpose. To identify mRNA expression-based stemness index- (mRNAsi-) related genes and build an mRNAsi-related risk signature for endometrial cancer. Methods. We collected mRNAsi data of endometrial cancer samples from The Cancer Genome Atlas (TCGA) and analyzed their relationship with the main clinicopathological characteristics and prognosis of endometrial cancer patients. We screened the top 50% of the genes in TCGA for weighted gene correlation network analysis (WGCNA) to explore mRNAsi-related gene sets. Among these mRNAsi-related genes, we further screened for those related to the prognosis of endometrial cancer patients via univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis. Using stepwise multivariate Cox regression analysis, a stemness index-related risk signature was constructed. Finally, we identified potential prognostic biomarkers for endometrial cancer by combining the GEO database and immunohistochemical staining. Results. The mRNAsi of endometrial cancer samples was significantly higher than that of normal samples and was related to the International Federation of Gynecology and Obstetrics (FIGO) stage, pathological grade, postoperative tumor status, and overall survival of endometrial cancer patients. We identified 21 mRNAsi-related gene modules, and 1,324 genes were obtained from the most relevant module. TCGA samples were divided into training and validation cohorts, and the training cohort was used to construct a nine-mRNAsi-related gene signature (B3GAT2, CD3EAP, DMC1, FRMPD3, LINC01224, LINC02068, LY6H, NR6A1, and TLE2). High-risk and low-risk patients had significant prognostic differences, and the risk signature could accurately predict their 1-, 3-, and 5-year survival. The nomogram composed of risk score and multiple clinicopathological features could accurately predict 1-, 3-, and 5-year survival. Finally, CD3EAP was found to be a novel prognostic biomarker for endometrial cancer. Conclusion. Endometrial cancer cell stemness is related to patient prognosis. The nine-gene risk signature is an independent prognostic factor and can accurately predict endometrial cancer patient prognosis.

Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 375
Author(s):  
Chaoting Zhou ◽  
Alex Heng Li ◽  
Shan Liu ◽  
Hong Sun

Background: Survival rates for highly invasive bladder cancer (BC) patients have been very low, with a 5-year survival rate of 6%. Accurate prediction of tumor progression and survival is important for diagnosis and therapeutic decisions for BC patients. Our study aims to develop an autophagy-related-gene (ARG) signature that helps to predict the survival of BC patients. Methods: RNA-seq data of 403 BC patients were retrieved from The Cancer Genome Atlas Urothelial Bladder Carcinoma (TCGA-BLCA) database. Univariate Cox regression analysis was performed to identify overall survival (OS)-related ARGs. The Lasso Cox regression model was applied to establish an ARG signature in the TCGA training cohort (N = 203). The performance of the 11-gene ARG signature was further evaluated in a training cohort and an independent validation cohort (N = 200) using Kaplan-Meier OS curve analysis, receiver operating characteristic (ROC) analysis, as well as univariate and multivariate Cox regression analysis. Results: Our study identified an 11-gene ARG signature that is significantly associated with OS, including APOL1, ATG4B, BAG1, CASP3, DRAM1, ITGA3, KLHL24, P4HB, PRKCD, ULK2, and WDR45. The ARGs-derived high-risk bladder cancer patients exhibited significantly poor OS in both training and validation cohorts. The prognostic model showed good predictive efficacy, with the area under the ROC curve (AUCs) for 1-year, 3-year, and 5-year overall survival of 0.702 (0.695), 0.744 (0.640), and 0.794 (0.658) in the training and validation cohorts, respectively. A prognostic nomogram, which included the ARGs-derived risk factor, age and stage for eventual clinical translation, was established. Conclusion: We identified a novel ARG signature for risk-stratification and robust prediction of overall survival for BC patients.


2022 ◽  
Author(s):  
Thongher Lia ◽  
Yanxiang Shao ◽  
Parbatraj Regmi ◽  
Xiang Li

Bladder cancer is one of the highly heterogeneous disorders accompanied by a poor prognosis. This study aimed to construct a model based on pyroptosis‑related lncRNA to evaluate the potential prognostic application in bladder cancer. The mRNA expression profiles of bladder cancer patients and corresponding clinical data were downloaded from the public database from The Cancer Genome Atlas (TCGA). Pyroptosis‑related lncRNAs were identified by utilizing a co-expression network of Pyroptosis‑related genes and lncRNAs. The lncRNA was further screened by univariate Cox regression analysis. Finally, 8 pyroptosis-related lncRNA markers were established using Lasso regression and multivariate Cox regression analysis. Patients were separated into high and low-risk groups based on the performance value of the median risk score. Patients in the high-risk group had significantly poorer overall survival (OS) than those in the low-risk group (p < 0.001), and In multivariate Cox regression analysis, the risk score was an independent predictive factor of OS ( HR>1, P<0.01). The area under the curve (AUC) of the 3- and 5-year OS in the receiver operating characteristic (ROC) curve were 0.742 and 0.739 respectively. In conclusion, these 8 pyroptosis-related lncRNA and their markers may be potential molecular markers and therapeutic targets for bladder cancer patients.


2020 ◽  
Vol 11 ◽  
Author(s):  
Hao Zuo ◽  
Luojun Chen ◽  
Na Li ◽  
Qibin Song

Pancreatic cancer is known as “the king of cancer,” and ubiquitination/deubiquitination-related genes are key contributors to its development. Our study aimed to identify ubiquitination/deubiquitination-related genes associated with the prognosis of pancreatic cancer patients by the bioinformatics method and then construct a risk model. In this study, the gene expression profiles and clinical data of pancreatic cancer patients were downloaded from The Cancer Genome Atlas (TCGA) database and the Genotype-tissue Expression (GTEx) database. Ubiquitination/deubiquitination-related genes were obtained from the gene set enrichment analysis (GSEA). Univariate Cox regression analysis was used to identify differentially expressed ubiquitination-related genes selected from GSEA which were associated with the prognosis of pancreatic cancer patients. Using multivariate Cox regression analysis, we detected eight optimal ubiquitination-related genes (RNF7, NPEPPS, NCCRP1, BRCA1, TRIM37, RNF25, CDC27, and UBE2H) and then used them to construct a risk model to predict the prognosis of pancreatic cancer patients. Finally, the eight risk genes were validated by the Human Protein Atlas (HPA) database, the results showed that the protein expression level of the eight genes was generally consistent with those at the transcriptional level. Our findings suggest the risk model constructed from these eight ubiquitination-related genes can accurately and reliably predict the prognosis of pancreatic cancer patients. These eight genes have the potential to be further studied as new biomarkers or therapeutic targets for pancreatic cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Dalong Wei ◽  
Xiaoling Lan ◽  
Zhiqun Huang ◽  
Qiang Tang ◽  
Zechen Wang ◽  
...  

Sarcoma is a rare and an extremely aggressive form of cancer that originates from mesenchymal cells. Pyroptosis exerts a dual effect on tumours by inhibiting tumour cell proliferation while creating a microenvironment suitable for tumour cell development and proliferation. However, the significance of pyroptosis-related gene (PRG) expression in sarcoma has not yet been evaluated. Here, we conduct a retrospective analysis to examine PRG expression in 256 sarcoma samples from The Cancer Genome Atlas database. We identified the PRGs that had a significant correlation with overall patient survival in sarcoma by performing a univariate Cox regression analysis. Subsequently, we conducted a LASSO regression analysis and created a risk model for a six-PRG signature. As indicated from the Kaplan–Meier analysis, this signature revealed a significant difference between high- and low-risk sarcoma patients. A receiver operating characteristic curve analysis confirmed that this signature could predict overall patient survival in sarcoma patients with high sensitivity and specificity. Gene ontology annotation and Kyoto Encyclopaedia of Genes and Genomes pathway enrichment analyses revealed that five independent PRGs were closely associated with increased immune activity. Moreover, we also deciphered that increased number of immune cells infiltrated the tumour microenvironment in sarcoma. In brief, the PRG signature can effectively act as novel prognostic biomarker for sarcoma patients and is associated with the tumour immune microenvironment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bixian Luo ◽  
Jianwei Lin ◽  
Wei Cai ◽  
Mingliang Wang

The prognosis of advanced colon adenocarcinoma (COAD) remains poor. However, existing methods are still difficult to assess patient prognosis. Pyroptosis, a lytic and inflammatory process of programmed cell death caused by the gasdermin protein, is involved in the development and progression of various tumors. Moreover, there are no related studies using pyroptosis-related genes to construct a model to predict the prognosis of COAD patients. Thus, in this study, bioinformatics methods were used to analyze the data of COAD patients downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to construct a risk model for the patient prognosis. TCGA database was used as the training set, and GSE39582 downloaded from GEO was used as the validation set. A total of 24 pyroptosis-related genes shown significantly different expression between normal and tumor tissues in COAD and seven genes (CASP4, CASP5, CASP9, IL6, NOD1, PJVK, and PRKACA) screened by univariate and LASSO cox regression analysis were used to construct the risk model. The receiver operating characteristic (ROC) and Kaplan–Meier (K–M curves) curves showed that the model based on pyroptosis-related genes can be used to predict the prognosis of COAD and can be validated by the external cohort well. Then, the clinicopathological factors were combined with the risk score to establish a nomogram with a C-index of 0.774. In addition, tissue validation results also showed that CASP4, CASP5, PRKACA, and NOD1 were differentially expressed between tumor and normal tissues from COAD patients. In conclusion, the risk model based on the pyroptosis-related gene can be used to assess the prognosis of COAD patients well, and the related genes may become the potential targets for treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan Ouyang ◽  
Kaide Xia ◽  
Xue Yang ◽  
Shichao Zhang ◽  
Li Wang ◽  
...  

AbstractAlternative splicing (AS) events associated with oncogenic processes present anomalous perturbations in many cancers, including ovarian carcinoma. There are no reliable features to predict survival outcomes for ovarian cancer patients. In this study, comprehensive profiling of AS events was conducted by integrating AS data and clinical information of ovarian serous cystadenocarcinoma (OV). Survival-related AS events were identified by Univariate Cox regression analysis. Then, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis were used to construct the prognostic signatures within each AS type. Furthermore, we established a splicing-related network to reveal the potential regulatory mechanisms between splicing factors and candidate AS events. A total of 730 AS events were identified as survival-associated splicing events, and the final prognostic signature based on all seven types of AS events could serve as an independent prognostic indicator and had powerful efficiency in distinguishing patient outcomes. In addition, survival-related AS events might be involved in tumor-related pathways including base excision repair and pyrimidine metabolism pathways, and some splicing factors might be correlated with prognosis-related AS events, including SPEN, SF3B5, RNPC3, LUC7L3, SRSF11 and PRPF38B. Our study constructs an independent prognostic signature for predicting ovarian cancer patients’ survival outcome and contributes to elucidating the underlying mechanism of AS in tumor development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chunlei Wu ◽  
Quanteng Hu ◽  
Dehua Ma

AbstractLung adenocarcinoma (LUAD) is the main pathological subtype of Non-small cell lung cancer. We downloaded the gene expression profile and immune-related gene set from the TCGA and ImmPort database, respectively, to establish immune-related gene pairs (IRGPs). Then, IRGPs were subjected to univariate Cox regression analysis, LASSO regression analysis, and multivariable Cox regression analysis to screen and develop an IRGPs signature. The receiver operating characteristic curve (ROC) was applied for evaluating the predicting accuracy of this signature by calculating the area under ROC (AUC) and data from the GEO set was used to validate this signature. The relationship of 22 tumor-infiltrating immune cells (TIICs) to the immune risk score was also investigated. An IRGPs signature with 8 IRGPs was constructed. The AUC for 1- and 3-year overall survival in the TCGA set was 0.867 and 0.870, respectively. Similar results were observed in the AUCs of GEO set 1, 2 and 3 (GEO set 1 [1-year: 0.819; 3-year: 0.803]; GEO set 2 [1-year: 0.834; 3-year: 0.870]; GEO set 3 [1-year: 0.955; 3-year: 0.827]). Survival analysis demonstrated high-risk LUAD patients exhibited poorer prognosis. The multivariable Cox regression indicated that the risk score was an independent prognostic factor. The immune risk score was highly associated with several TIICs (Plasma cells, memory B cells, resting memory CD4 T cells, and activated NK cells). We developed a novel IRGPs signature for predicting 1- and 3- year overall survival in LUAD, which would be helpful for prognosis assessment of LUAD.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Xu Wang ◽  
Yuanmin Xu ◽  
Ting Li ◽  
Bo Chen ◽  
Wenqi Yang

Abstract Background Autophagy is an orderly catabolic process for degrading and removing unnecessary or dysfunctional cellular components such as proteins and organelles. Although autophagy is known to play an important role in various types of cancer, the effects of autophagy-related genes (ARGs) on colon cancer have not been well studied. Methods Expression profiles from ARGs in 457 colon cancer patients were retrieved from the TCGA database (https://portal.gdc.cancer.gov). Differentially expressed ARGs and ARGs related to overall patient survival were identified. Cox proportional-hazard models were used to investigate the association between ARG expression profiles and patient prognosis. Results Twenty ARGs were significantly associated with the overall survival of colon cancer patients. Five of these ARGs had a mutation rate ≥ 3%. Patients were divided into high-risk and low-risk groups based on Cox regression analysis of 8 ARGs. Low-risk patients had a significantly longer survival time than high-risk patients (p < 0.001). Univariate and multivariate Cox regression analysis showed that the resulting risk score, which was associated with infiltration depth and metastasis, could be an independent predictor of patient survival. A nomogram was established to predict 1-, 3-, and 5-year survival of colon cancer patients based on 5 independent prognosis factors, including the risk score. The prognostic nomogram with online webserver was more effective and convenient to provide information for researchers and clinicians. Conclusion The 8 ARGs can be used to predict the prognosis of patients and provide information for their individualized treatment.


2021 ◽  
Vol 20 ◽  
pp. 153303382110414
Author(s):  
Xiaoyong Li ◽  
Jiaqong Lin ◽  
Yuguo pan ◽  
Peng Cui ◽  
Jintang Xia

Background: Liver progenitor cells (LPCs) play significant roles in the development and progression of hepatocellular carcinoma (HCC). However, no studies on the value of LPC-related genes for evaluating HCC prognosis exist. We developed a gene signature of LPC-related genes for prognostication in HCC. Methods: To identify LPC-related genes, we analyzed mRNA expression arrays from a dataset (GSE57812 & GSE 37071) containing LPCs, mature hepatocytes, and embryonic stem cell samples. HCC RNA-Seq data from The Cancer Genome Atlas (TCGA) were used to explore the differentially expressed genes (DEGs) related to prognosis through DEG analysis and univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed to construct the LPC-related gene prognostic model in the TCGA training dataset. This model was validated in the TCGA testing set and an external dataset (International Cancer Genome Consortium [ICGC] dataset). Finally, we investigated the relationship between this prognostic model with tumor-node-metastasis stage, tumor grade, and vascular invasion of HCC. Results: Overall, 1770 genes were identified as LPC-related genes, of which 92 genes were identified as DEGs in HCC tissues compared with normal tissues. Furthermore, we randomly assigned patients from the TCGA dataset to the training and testing cohorts. Twenty-six DEGs correlated with overall survival (OS) in the univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed in the TCGA training set, and a 3-gene signature was constructed to stratify patients into 2 risk groups: high-risk and low-risk. Patients in the high-risk group had significantly lower OS than those in the low-risk group. Receiver operating characteristic curve analysis confirmed the signature's predictive capacity. Moreover, the risk score was confirmed to be an independent predictor for patients with HCC. Conclusion: We demonstrated that the LPC-related gene signature can be used for prognostication in HCC. Thus, targeting LPCs may serve as a therapeutic alternative for HCC.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e17543-e17543
Author(s):  
Xiaoxiang Chen ◽  
Jing Ni ◽  
Xia Xu ◽  
Wenwen Guo ◽  
Xianzhong Cheng ◽  
...  

e17543 Background: Homologous recombination deficiency (HRD) is the first phenotypically defined predictive biomarker for Poly (ADP-ribose) polymerase inhibitors (PARPi) in ovarian cancer. However, the proportion of HRD positive in real world and the relationship of HRD status with PARPi in Chinese ovarian cancer patients remains unknown. Methods: A total of sixty-four ovarian cancer patients underwent PARPi, both Olaparib and Niraparib, were enrolled from August 2018 to January 2021 in Jiangsu Institute of Cancer Hospital. HRD score which was the sum of loss of heterozygosity (LOH), telomeric allelic imbalance (TAI) and large-scale state transitions (LST) events were calculated using tumor DNA-based next generation sequencing (NGS) assays. HRD-positive was defined by either BRCA1/2 pathogenic or likely pathogenic mutation or HRD score ≥42. Progression-free survival (PFS) was analyzed with a log-rank test using HRD status and summarized using Kaplan-Meier methodology. Univariate and multiple cox-regression analysis were conducted to investigate all possible clinical factors. Results: 71.9% (46/64) patients were HRD positive and the rest 28.1% (18/64) were HRD negative, which was higher than the HRD positive proportion reported in Western countries. The PFS among HRD positive patients was significantly longer than those HRD negative patients (medium PFS 8.9 m vs 3.6 m, hazard ratio [HR]: 0.22, p < 0.001). Among them, 23 patients who were BRCA wild type but HRD positive had longer PFS than those with BRCA wild type and HRD negative (medium PFS 9.2 m vs 3.6 m, HR: 0.20, p < 0.001). Univariate cox-regression analysis found that HRD status, previous treatment lines, secondary cytoreductive surgery (SCS) were significantly associated with PFS after PARPi treatment. After multiple regression correction, HRD status (HR: 0.39, 95% CI: [0.20-0.76], p = 0.006), ECOG score (HR: 2.53, 95% CI: [1.24-5.17], p = 0.011) and SCS (HR: 2.21, 95% CI: [1.09-4.48], p = 0.028) were the independent factors. Subgroup analysis in ECOG = 0 subgroup (N = 36), HRD positive patients had significant longer PFS than HRD negative patients (medium PFS 10.3 m vs 5.8 m, HR: 0.14, p < 0.001). Also in the subgroup of patients without SCS, PFS in patients with HRD was longer than patients without HRD (medium PFS 10.2 m vs 5.7 m, HR: 0.29, p = 0.003). Conclusions: This is the first real-world data of HRD status in ovarian cancer patients from China and demonstrate that HRD is a valid biomarker for PARP inhibitors in Chinese ovarian cancer patients.


Sign in / Sign up

Export Citation Format

Share Document