scholarly journals Mechanical Characteristics of Frozen Sandstone under Lateral Unloading: An Experimental Study

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Shuai Liu ◽  
Gengshe Yang ◽  
Xihao Dong ◽  
Yanjun Shen ◽  
Hui Liu

The lateral unloading strength and deformation of surrounding frozen rock are the key parameters for safety evaluation of frozen shaft construction. A low-temperature and high-pressure rock triaxial test system was used to simulate freezing construction, and a constant axial pressure unloading confining pressure test was carried out on frozen sandstone. The effects of freezing temperature, initial confining pressure, and unloading rate on the strength, deformation, and failure modes of frozen sandstone are studied. The main results of the study are as follows: (1) under the initial confining pressure of 20 MPa, the temperature of the sandstone decreases from 20°C to –5°C, and the peak stress and elastic modulus of triaxial compression increase by approximately 3 times. Under lateral unloading conditions, the peak stress of frozen sandstone is about 2∼3 times that of 20°C sandstone, and the peak strain of 20°C sandstone is smaller than that of frozen sandstone. The temperature of frozen sandstone decreases and the rate of increase in the peak stress of triaxial compression is slightly less than the rate of increase in the peak stress of lateral unloading. (2) The initial confining pressure of frozen sandstone increases, the growth rate of axial and radial strain increases, the radial strain dominates the failure process, and the lateral unloading strength decreases significantly. (3) The lateral unloading rate of frozen sandstone increases, the peak strength increases, and the axial and radial strain decrease. At a low unloading rate, partial creep deformation occurs. (4) The frozen rock sample undergoes tensile splitting failure under lateral unloading. According to the stress-strain curve of the frozen rock sample, the relationship between changes in the deformation modulus and changes in the confining pressure unloading amount during the unloading process of the rock sample is obtained.

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Chao Zhang ◽  
Gaohan Jin ◽  
Chao Liu ◽  
Shugang Li ◽  
Junhua Xue ◽  
...  

Borehole-sealing solidified material plays a significant role in improving sealing quality and enhancing gas drainage performance. In this study, the MTS815 electro-hydraulic triaxial servo test system and MR-60 NMR test system were adopted to conduct triaxial compression control experiment on the coal sample material, concrete material, and new solidified sealing material, respectively. This paper aims to analyze the difference of support effects, porosity, and stress sensitivity between those materials. Experimental results show that under the same stress condition, the stiffness of traditional concrete solidified material is the largest, while the new solidified material is the second, and the coal sample material is the smallest. Compared with the traditional concrete solidified material, the new solidified sealing material has better strain-bearing capacity and volumetric expansion capacity under each confining pressure in the experiment. The axial strain and volume increment of new solidified material is higher than those of the traditional concrete solidified material at the peak stress. Meanwhile, the confining pressure has a certain hysteresis effect on the postpeak stress attenuation. Fracture has the strongest stress sensitivity in three pore types, and its T2 map relaxation area has a larger compression than adsorption pore and seepage pore under the same pressure. The relative content of seepage pore and fracture in the new solidified material is less than that of coal and concrete samples, and the stress sensitivity of the new solidified materials is weaker than that of coal and concrete materials, thence, new solidified material will have better performance in borehole sealing. Outcomes of this study could provide guidance on the selection of the most effective sealing materials for sealing-quality improvement.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yongjie Yang ◽  
Yang Zhang ◽  
Tianli Zhang

Constitutive relationship of coal under triaxial compression must be determined during solving the theoretical calculation and numerical simulation about coal body failure. This paper carried out the conventional triaxial compression test on No. 3 coal of Xinhe Colliery using the MTS815.03 servo-controlled rock mechanical test system. The results indicate that the failure process of coal can be divided into 5 stages: densification stage, apparent linear elastic deformation stage, accelerated inelastic deformation stage, fracture and developing stage, and plasticity flow stage. Within the test confining pressure (20 MPa), the peak strain of coal is approximately linearly positively correlated with the confining pressure. The relationship between elastic modulus of coal and confining pressure is quadratic polynomial. The triaxial compressive strength and residual strength of coal are approximately linearly positively correlated with confining pressure. The constitutive relationship model of coal can be simplified as the four segments of straight line model of “elastic–plastic hardening–plastic softening–residual perfectly plastic.” Through fitting calculation of test data, the segmented constitutive equation of coal can be obtained, and the every segment span of strain.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yang Zhang ◽  
Yongjie Yang ◽  
Depeng Ma

In order to understand the influence of unloading path on the mechanical properties of coal, triaxial unloading confining pressure tests with different initial confining pressure and different unloading rate were carried out. The test results show that the triaxial unloading strength of coal samples under different test conditions is lower than conventional triaxial tests, but the brittleness characteristics are more obvious. This result indicates that the coal samples are easily damaged under unloading conditions. In the axial loading stage of the confinement unloading tests, the axial strain plays a leading role. However, during the confining pressure unloading stage, the circumferential deformation is large, which is the main deformation in this stage. Higher unloading rates of confining pressure are associated with shorter times between the peak stress position and sample complete failure. This shows that samples are more easily destroyed under higher unloading rates and the samples are more difficultly destroyed under lower unloading rates. In addition, with increasing unloading rate, the peak principal stress difference and confining pressure at failure decrease gradually, whereas the confining pressure difference at failure increases gradually. Compared with conventional triaxial compression tests, the cohesion of coal is reduced and the internal friction angle is increased under the condition of triaxial unloading test.


2022 ◽  
Vol 9 ◽  
Author(s):  
Bo Ma ◽  
Feng Wang ◽  
Hongyang Liu ◽  
Dawei Yin ◽  
Zhiguo Xia

A comprehensive understanding of the mechanical properties of coal and rock sections is necessary for interpreting the deformation and failure modes of such underground sections and for evaluating the potential dynamic hazards. However, most studies have focused on horizontal coal–rock composites and the mechanical properties of inclined coal–rock composites have not been considered. To explore the influence of different confining pressures and inclined coal seam thicknesses on the mechanical properties and failure characteristics of rock–coal–rock (RCR) composites, a numerical model based on the particle flow code was used to perform simulations on five inclined RCR composites at different confining pressures. The results show that the mechanical properties and failure characteristics of the RCR composites are affected considerably by the inclined coal seam thickness and the confining pressure. (1) When the inclined coal seam thickness is constant, the elasticity modulus of the inclined RCR composite increases nonlinearly with the confining pressure at first, and then remains constant. At the same confining pressure, the elasticity modulus of the inclined RCR composite decreases nonlinearly with the inclined coal seam thickness. (2) When the confining pressure is constant, the peak stress of the inclined RCR composite decreases with the increase of the inclined coal seam thickness. When the inclined coal seam thickness is constant, the peak stress increases with the confining pressure. (3) As the inclined coal seam thickness increases, the peak strain of the inclined RCR composite first decreases rapidly, and then remains constant when there is no confining pressure. When the confining pressure is between 5 and 20 MPa, the peak strain of the inclined RCR composite gradually increases. (4) In the absence of confining pressure, there are few microcracks in the rock at an inclined coal seam thickness of 10 mm, whereas all the other cracks are in the coal section. When the confining pressure ranges between 5 and 20 MPa, the failure modes of the RCR composite can be divided into Y- and X-types.


Author(s):  
Manfred Staat

AbstractExtension fractures are typical for the deformation under low or no confining pressure. They can be explained by a phenomenological extension strain failure criterion. In the past, a simple empirical criterion for fracture initiation in brittle rock has been developed. In this article, it is shown that the simple extension strain criterion makes unrealistic strength predictions in biaxial compression and tension. To overcome this major limitation, a new extension strain criterion is proposed by adding a weighted principal shear component to the simple criterion. The shear weight is chosen, such that the enriched extension strain criterion represents the same failure surface as the Mohr–Coulomb (MC) criterion. Thus, the MC criterion has been derived as an extension strain criterion predicting extension failure modes, which are unexpected in the classical understanding of the failure of cohesive-frictional materials. In progressive damage of rock, the most likely fracture direction is orthogonal to the maximum extension strain leading to dilatancy. The enriched extension strain criterion is proposed as a threshold surface for crack initiation CI and crack damage CD and as a failure surface at peak stress CP. Different from compressive loading, tensile loading requires only a limited number of critical cracks to cause failure. Therefore, for tensile stresses, the failure criteria must be modified somehow, possibly by a cut-off corresponding to the CI stress. Examples show that the enriched extension strain criterion predicts much lower volumes of damaged rock mass compared to the simple extension strain criterion.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Xinyu Liu ◽  
Zhende Zhu ◽  
Aihua Liu

Filling is commonly found in natural cracked rock mass. As the weakest part of the rock, the filling properties directly affect the rock deformation and strength, permeability, and so on and affect the safety and stability of the rock mass engineering. In this study, a single slit has been preset in sandstones and filled with different physical properties materials. Based on the laboratory triaxial seepage test, the permeability and strength characteristics of filled cracked sandstones are analyzed, and the failure modes are obtained. The main findings of this study are as follows: (1) The permeability coefficient peak value of the filled cracked rock appears before the stress peak. (2) At the same confining pressure growth rate, the peak stress growth rate of the filled cracked rock is generally higher than that of the intact rock and the strength growth rate of the cracked rock increases with the length of the fracture. The strength characteristics of the filling in the uniaxial compression tests and triaxial seepage tests are significantly affected by the hydraulic properties. (3) The strength and permeability coefficients of cracked rock filled with cement mortar are more sensitive to the change of confining pressure, while under the same condition, the ones of cracked rock filled with gypsum mortar are stable. (4) According to the failure mechanism, under the seepage stress, the secondary cracks can be divided into 3 types and the failure modes can be divided into 2 types.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Huilin Le ◽  
Shaorui Sun ◽  
Chenghua Xu ◽  
Liuyang Li ◽  
Yong Liu

Flaws existing in rock masses are generally unparallel and under three-dimensional stress; however, the mechanical and cracking behaviors of the specimens with two unparallel flaws under triaxial compression have been rarely studied. Therefore, this study conducted comprehensive research on the cracking and coalescence behavior and mechanical properties of specimens with two unparallel flaws under triaxial compression. Triaxial compressive tests were conducted under different confining pressures on rock-like specimens with two preexisting flaws but varying flaw geometries (with respect to the inclination angle of the two unparallel flaws, rock bridge length, and rock bridge inclination angle). Six crack types and eleven coalescence types in the bridge region were observed, and three types of failure modes (tensile failure, shear failure, and tensile-shear failure) were observed in experiments. Test results show that bridge length and bridge inclination angle have an effect on the coalescence pattern, but the influence of bridge inclination angle is larger than that of the bridge length. When the confining pressure is low, coalescence patterns and failure modes of the specimens are greatly affected by flaw geometry, but when confining pressure rose to a certain level, the influence of confining pressure is larger than the effect of flaw geometry. The peak strength of the specimens is affected by flaw geometry and confining pressure. There is a critical value for the bridge length. If the bridge length is larger than the critical value, peak strengths of the samples almost keep constant as the bridge length increases. In addition, as the bridge inclination angle increases, there is an increase in the probability of tensile cracks occurring, and with an increase in the confining pressure, the probability of the occurrence of shear cracks increases.


1992 ◽  
Vol 38 (128) ◽  
pp. 65-76 ◽  
Author(s):  
P. Kalifa ◽  
G. Ouillon ◽  
P. Duval

AbstractTriaxial and uniaxial compression tests have been carried out at –10°C on granular ice in order to study the role of microcracking on failure in the ductile-brittle transition zone. In the triaxial tests, the effect of confining pressure and strain rate on the crack population, as well as on strength and strain at the peak stress, was investigated. In the uniaxial tests, we measured the evolution of elastic and non-elastic components of deformation with the stress-strain history. The concept of effective stress, with a single scalar damage variable, was used to calculate the effect of microcracking on the strain components.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Huamin Li ◽  
Huigui Li ◽  
Baobin Gao ◽  
Dongjie Jiang ◽  
Junfa Feng

To study the effect of loading rate on mechanical properties and acoustic emission characteristics of coal samples, collected from Sanjiaohe Colliery, the uniaxial compression tests are carried out under various levels of loading rates, including 0.001 mm/s, 0.002 mm/s, and 0.005 mm/s, respectively, using AE-win E1.86 acoustic emission instrument and RMT-150C rock mechanics test system. The results indicate that the loading rate has a strong impact on peak stress and peak strain of coal samples, but the effect of loading rate on elasticity modulus of coal samples is relatively small. When the loading rate increases from 0.001 mm/s to 0.002 mm/s, the peak stress increases from 22.67 MPa to 24.99 MPa, the incremental percentage is 10.23%, and under the same condition the peak strain increases from 0.006191 to 0.007411 and the incremental percentage is 19.71%. Similarly, when the loading rate increases from 0.002 mm/s to 0.005 mm/s, the peak stress increases from 24.99 MPa to 28.01 MPa, the incremental percentage is 12.08%, the peak strain increases from 0.007411 to 0.008203, and the incremental percentage is 10.69%. The relationship between acoustic emission and loading rate presents a positive correlation, and the negative correlation relation has been determined between acoustic emission cumulative counts and loading rate during the rupture process of coal samples.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Yan Zhou ◽  
Chuanxiao Liu ◽  
Depeng Ma

In the study of the acoustic emission (AE) characteristics of rock samples or coal samples under triaxial compression conditions, most scholars carry out relevant experiments by placing the AE detector on the outer wall of the triaxial chamber of the rock mechanics test system. Owing to the continuous obstruction of AE signals by hydraulic oil in the triaxial chamber and the frequent interference of external noises, the final experimental data cannot objectively and truly reflect the essential characteristics of AE of rock or coal under triaxial compression conditions. It is difficult to scientifically guide and accurately predict precursory information of rock’s or coal’s rupture and instability. Based on this, a series of improvements and optimizations were made to the original triaxial compression AE test method, which is based on the modification of the communication interface of the rock mechanics test system, a test head which can put the AE detector into the triaxial chamber and withstands high confining pressure, in order to obtain the true, comprehensive, and reliable AE signals. It is of considerable significance to the scientific determination of the precursory characteristics of rock’s or coal’s rupture and instability.


Sign in / Sign up

Export Citation Format

Share Document