scholarly journals Leukocytes from Patients with Drug-Sensitive and Multidrug-Resistant Tuberculosis Exhibit Distinctive Profiles of Chemokine Receptor Expression and Migration Capacity

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Ranferi Ocaña-Guzmán ◽  
Norma A. Téllez-Navarrete ◽  
Lucero A. Ramón-Luing ◽  
Iliana Herrera ◽  
Marlon De Ita ◽  
...  

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains as a leading infectious cause of death worldwide. The increasing number of multidrug-resistant TB (MDR-TB) cases contributes to the poor control of the TB epidemic. Currently, little is known about the immunological requirements of protective responses against MDR-TB. This is of major relevance to identify immune markers for treatment monitoring and targets for adjuvant immunotherapies. Here, we hypothesized that MDR-TB patients display unique immunophenotypical features and immune cell migration dynamics compared to drug-sensitive TB (DS-TB). Hence, we prospectively conducted an extensive characterization of the immune profile of MDR-TB patients at different time points before and after pharmacological therapy. For this purpose, we focused on the leukocyte expression of chemokine receptors, distribution of different monocyte and lymphocyte subsets, plasma levels of chemotactic factors, and in vitro migration capacity of immune cells. Our comparative cohort consisted of DS-TB patients and healthy volunteer donors (HD). Our results demonstrate some unique features of leukocyte migration dynamics during MDR-TB. These include increased and prolonged circulation of CD3+ monocytes, CCR4+ monocytes, EM CD4+ T cells, EM/CM CD8+ T cells, and CXCR1+CXCR3+ T cells that is sustained even after the administration of anti-TB drugs. We also observed shared characteristics of both MDR-TB and DS-TB that include CCR2+ monocyte depletion in the blood; high plasma levels of MPC-1, CCL-7, and IP-10; and increased responsiveness of leukocytes to chemotactic signals in vitro. Our study contributes to a better understanding of the MDR-TB pathobiology and uncovers immunological readouts of treatment efficacy.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Feng Wang ◽  
Bryant Chau ◽  
Sean M. West ◽  
Christopher R. Kimberlin ◽  
Fei Cao ◽  
...  

AbstractGlucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) and GITR ligand (GITRL) are members of the tumor necrosis superfamily that play a role in immune cell signaling, activation, and survival. GITR is a therapeutic target for directly activating effector CD4 and CD8 T cells, or depleting GITR-expressing regulatory T cells (Tregs), thereby promoting anti-tumor immune responses. GITR activation through its native ligand is important for understanding immune signaling, but GITR structure has not been reported. Here we present structures of human and mouse GITR receptors bound to their cognate ligands. Both species share a receptor–ligand interface and receptor–receptor interface; the unique C-terminal receptor–receptor enables higher order structures on the membrane. Human GITR–GITRL has potential to form a hexameric network of membrane complexes, while murine GITR–GITRL complex forms a linear chain due to dimeric interactions. Mutations at the receptor–receptor interface in human GITR reduce cell signaling with in vitro ligand binding assays and minimize higher order membrane structures when bound by fluorescently labeled ligand in cell imaging experiments.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A126-A126
Author(s):  
John Goulding ◽  
Mochtar Pribadi ◽  
Robert Blum ◽  
Wen-I Yeh ◽  
Yijia Pan ◽  
...  

BackgroundMHC class I related proteins A (MICA) and B (MICB) are induced by cellular stress and transformation, and their expression has been reported for many cancer types. NKG2D, an activating receptor expressed on natural killer (NK) and T cells, targets the membrane-distal domains of MICA/B, activating a potent cytotoxic response. However, advanced cancer cells frequently evade immune cell recognition by proteolytic shedding of the α1 and α2 domains of MICA/B, which can significantly reduce NKG2D function and the cytolytic activity.MethodsRecent publications have shown that therapeutic antibodies targeting the membrane-proximal α3 domain inhibited MICA/B shedding, resulting in a substantial increase in the cell surface density of MICA/B and restoration of immune cell-mediated tumor immunity.1 We have developed a novel chimeric antigen receptor (CAR) targeting the conserved α3 domain of MICA/B (CAR-MICA/B). Additionally, utilizing our proprietary induced pluripotent stem cell (iPSC) product platform, we have developed multiplexed engineered, iPSC-derived CAR-MICA/B NK (iNK) cells for off-the-shelf cancer immunotherapy.ResultsA screen of CAR spacer and ScFv orientations in primary T cells delineated MICA-specific in vitro activation and cytotoxicity as well as in vivo tumor control against MICA+ cancer cells. The novel CAR-MICA/B design was used to compare efficacy against NKG2D CAR T cells, an alternative MICA/B targeting strategy. CAR-MICA/B T cells showed superior cytotoxicity against melanoma, breast cancer, renal cell carcinoma, and lung cancer lines in vitro compared to primary NKG2D CAR T cells (p<0.01). Additionally, using an in vivo xenograft metastasis model, CAR-MICA/B T cells eliminated A2058 human melanoma metastases in the majority of the mice treated. In contrast, NKG2D CAR T cells were unable to control tumor growth or metastases. To translate CAR-MICA/B functionality into an off-the-shelf cancer immunotherapy, CAR-MICA/B was introduced into a clonal master engineered iPSC line to derive a multiplexed engineered, CAR-MICA/B iNK cell product candidate. Using a panel of tumor cell lines expressing MICA/B, CAR-MICA/B iNK cells displayed MICA specificity, resulting in enhanced cytokine production, degranulation, and cytotoxicity. Furthermore, in vivo NK cell cytotoxicity was evaluated using the B16-F10 melanoma cell line, engineered to express MICA. In this model, CAR-MICA/B iNK cells significantly reduced liver and lung metastases, compared to untreated controls, by 93% and 87% respectively.ConclusionsOngoing work is focused on extending these preclinical studies to further support the clinical translation of an off-the-shelf, CAR-MICA/B iNK cell cancer immunotherapy with the potential to overcome solid tumor escape from NKG2D-mediated mechanisms of recognition and killing.ReferenceFerrari de Andrade L, Tay RE, Pan D, Luoma AM, Ito Y, Badrinath S, Tsoucas D, Franz B, May KF Jr, Harvey CJ, Kobold S, Pyrdol JW, Yoon C, Yuan GC, Hodi FS, Dranoff G, Wucherpfennig KW. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science 2018 Mar 30;359(6383):1537–1542.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Michaela Gasch ◽  
Tina Goroll ◽  
Mario Bauer ◽  
Denise Hinz ◽  
Nicole Schütze ◽  
...  

The T helper cell subsets Th1, Th2, Th17, and Treg play an important role in immune cell homeostasis, in host defense, and in immunological disorders. Recently, much attention has been paid to Th17 cells which seem to play an important role in the early phase of the adoptive immune response and autoimmune disease. When generating Th17 cells underin vitroconditions the amount of IL-17A producing cells hardly exceeds 20% while the nature of the remaining T cells is poorly characterized. As engagement of the aryl hydrocarbon receptor (AHR) has also been postulated to modulate the differentiation of T helper cells into Th17 cells with regard to the IL-17A expression we ask how far do Th17 polarizing conditions in combination with ligand induced AHR activation have an effect on the production of other T helper cell cytokines. We found that a high proportion of T helper cells cultured under Th17 polarizing conditions are IL-8 and IL-9 single producing cells and that AHR activation results in an upregulation of IL-8 and a downregulation of IL-9 production. Thus, we have identified IL-8 and IL-9 producing T helper cells which are subject to regulation by the engagement of the AHR.


2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Zhaojing Zong ◽  
Wei Jing ◽  
Jin Shi ◽  
Shu'an Wen ◽  
Tingting Zhang ◽  
...  

ABSTRACT Oxazolidinones are efficacious in treating mycobacterial infections, including tuberculosis (TB) caused by drug-resistant Mycobacterium tuberculosis. In this study, we compared the in vitro activities and MIC distributions of delpazolid, a novel oxazolidinone, and linezolid against multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) in China. Additionally, genetic mutations in 23S rRNA, rplC, and rplD genes were analyzed to reveal potential mechanisms underlying the observed oxazolidinone resistance. A total of 240 M. tuberculosis isolates were included in this study, including 120 MDR-TB isolates and 120 XDR-TB isolates. Overall, linezolid and delpazolid MIC90 values for M. tuberculosis isolates were 0.25 mg/liter and 0.5 mg/liter, respectively. Based on visual inspection, we tentatively set epidemiological cutoff (ECOFF) values for MIC determinations for linezolid and delpazolid at 1.0 mg/liter and 2.0 mg/liter, respectively. Although no significant difference in resistance rates was observed between linezolid and delpazolid among XDR-TB isolates (P > 0.05), statistical analysis revealed a significantly greater proportion of linezolid-resistant isolates than delpazolid-resistant isolates within the MDR-TB group (P = 0.036). Seven (53.85%) of 13 linezolid-resistant isolates were found to harbor mutations within the three target genes. Additionally, 1 isolate exhibited an amino acid substitution (Arg126His) within the protein encoded by rplD that contributed to high-level resistance to linezolid (MIC of >16 mg/liter), compared to a delpazolid MIC of 0.25. In conclusion, in vitro susceptibility testing revealed that delpazolid antibacterial activity was comparable to that of linezolid. A novel mutation within rplD that endowed M. tuberculosis with linezolid, but not delpazolid, resistance was identified.


2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
Abdul Hannan ◽  
Saira Munir ◽  
Muhammad Usman Arshad ◽  
Nabila Bashir

Background. Tuberculosis (TB) is a chronic bacterial disease. Mycobacterium tuberculosis, being the leading member of the MTB complex, is the main cause of tuberculosis worldwide. Tuberculosis is managed with combination of drugs: streptomycin, isoniazid, rifampicin, ethambutol, and pyrazinamide. Over the recent past years resistance against first line antituberculous drugs has emerged rapidly throughout the world resulting in MDR strains. The new threat in the management of MDR-TB is the development of resistance against second line drugs: aminoglycosides, polypeptides, fluoroquinolones, and thioamides. Multidrug resistant (MDR) and extensively drug resistant TB (XDR) strains have become a major concern to control TB particularly in the developing countries. The need of the hour is to look for new modalities having antimycobacterial activity. Honey has been well known for its antibacterial activity. We intended to explore its antimycobacterial activity against MDR-TB. Objective. The objective of this study was to determine whether Pakistani Beri honey has any antimycobacterial activity. Method. The study was conducted in the Department of Microbiology, University of Health Sciences, Lahore. Clinical isolates (n=21) of MDR-MTB were evaluated for their susceptibility to Beri honey. The isolates were provided, courtesy of Pakistan Medical Research Council. These isolates were identified by MTBc ID test (Becton & Dickinson) and further tested for their antimycobacterial activity using Beri honey. The honey was tested at the following concentrations (v/v): 1%, 2%, 3%, 4%, and 5% in MGIT 960. Growth controls were also inoculated with each isolate (growth control has no concentration of honey, only containing growth of isolate). Results. MDR-TB isolates (n=21) were tested; 3 (14%) isolates were susceptible at 1% v/v honey, while at 2% v/v of honey 18 (86%) isolates were found to be susceptible. All the 21 isolates (n=21) were susceptible at 3% v/v of honey. Conclusion. The present study clearly demonstrates that Pakistani Beri honey possesses significant antimycobacterial activity in vitro. The antimycobacterial activity of Pakistani Beri honey may, therefore, be exploited in an appropriate mouse model.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1630 ◽  
Author(s):  
Junu A. George ◽  
Shaikha H. AlShamsi ◽  
Maryam H. Alhammadi ◽  
Ahmed R. Alsuwaidi

Influenza A virus (IAV) and respiratory syncytial virus (RSV) are leading causes of childhood infections. RSV and influenza are competitive in vitro. In this study, the in vivo effects of RSV and IAV co-infection were investigated. Mice were intranasally inoculated with RSV, with IAV, or with both viruses (RSV+IAV and IAV+RSV) administered sequentially, 24 h apart. On days 3 and 7 post-infection, lung tissues were processed for viral loads and immune cell populations. Lung functions were also evaluated. Mortality was observed only in the IAV+RSV group (50% of mice did not survive beyond 7 days). On day 3, the viral loads in single-infected and co-infected mice were not significantly different. However, on day 7, the IAV titer was much higher in the IAV+RSV group, and the RSV viral load was reduced. CD4 T cells were reduced in all groups on day 7 except in single-infected mice. CD8 T cells were higher in all experimental groups except the RSV-alone group. Increased airway resistance and reduced thoracic compliance were demonstrated in both co-infected groups. This model indicates that, among all the infection types we studied, infection with IAV followed by RSV is associated with the highest IAV viral loads and the most morbidity and mortality.


2015 ◽  
Vol 83 (8) ◽  
pp. 3074-3082 ◽  
Author(s):  
Nan Hou ◽  
Xianyu Piao ◽  
Shuai Liu ◽  
Chuang Wu ◽  
Qijun Chen

T cell immunoglobulin- and mucin-domain-containing molecule 3 (Tim-3) has been regarded as an important regulatory factor in both adaptive and innate immunity. Recently, Tim-3 was reported to be involved in Th2-biased immune responses in mice infected withSchistosoma japonicum, but the exact mechanism behind the involvement of Tim-3 remains unknown. The present study aims to understand the role of Tim-3 in the immune response againstS. japonicuminfection. Tim-3 expression was determined by flow cytometry, and increased Tim-3 expression was observed on CD4+and CD8+T cells, NK1.1+cells, and CD11b+cells from the livers ofS. japonicum-infected mice. However, the increased level of Tim-3 was lower in the spleen than in the liver, and no increase in Tim-3 expression was observed on splenic CD8+T cells or CD11b+cells. The schistosome-induced upregulation of Tim-3 on natural killer (NK) cells was accompanied by reduced NK cell numbersin vitroandin vivo. Tim-3 antibody blockade led to upregulation of inducible nitric oxide synthase and interleukin-12 (IL-12) mRNA in CD11b+cells cocultured with soluble egg antigen and downregulation of Arg1 and IL-10, which are markers of M2 macrophages. In summary, we observed schistosome-induced expression of Tim-3 on critical immune cell populations, which may be involved in the Th2-biased immune response and alternative activation of macrophages during infection.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Regina Bones Barcellos ◽  
Isabela Neves de Almeida ◽  
Elisangela Costa da Silva ◽  
Harrison Magdinier Gomes ◽  
Lida Jouca de Assis Figueredo ◽  
...  

Abstract Background Molecular tests can allow the rapid detection of tuberculosis (TB) and multidrug-resistant TB (MDR-TB). TB-SPRINT 59-Plex Beamedex® is a microbead-based assay developed for the simultaneous spoligotyping and detection of MDR-TB. The accuracy and cost evaluation of new assays and technologies are of great importance for their routine use in clinics and in research laboratories. The aim of this study was to evaluate the performance of TB-SPRINT at three laboratory research centers in Brazil and calculate its mean cost (MC) and activity-based costing (ABC). Methods TB-SPRINT data were compared with the phenotypic and genotypic profiles obtained using Bactec™ MGIT™ 960 system and Genotype® MTBDRplus, respectively. Results Compared with MGIT, the accuracies of TB-SPRINT for the detection of rifampicin and isoniazid resistance ranged from 81 to 92% and 91.3 to 93.9%, respectively. Compared with MTBDRplus, the accuracies of TB-SPRINT for rifampicin and isoniazid were 99 and 94.2%, respectively. Moreover, the MC and ABC of TB-SPRINT were USD 127.78 and USD 109.94, respectively. Conclusion TB-SPRINT showed good results for isoniazid and rifampicin resistance detection, but still needs improvement to achieve In Vitro Diagnostics standards.


2020 ◽  
Vol 217 (7) ◽  
Author(s):  
Xueli Zhang ◽  
Ying Wang ◽  
Jian Song ◽  
Hanna Gerwien ◽  
Omar Chuquisana ◽  
...  

The endothelial cell basement membrane (BM) is a barrier to migrating leukocytes and a rich source of signaling molecules that can influence extravasating cells. Using mice lacking the major endothelial BM components, laminin 411 or 511, in murine experimental autoimmune encephalomyelitis (EAE), we show here that loss of endothelial laminin 511 results in enhanced disease severity due to increased T cell infiltration and altered polarization and pathogenicity of infiltrating T cells. In vitro adhesion and migration assays reveal higher binding to laminin 511 than laminin 411 but faster migration across laminin 411. In vivo and in vitro analyses suggest that integrin α6β1- and αvβ1-mediated binding to laminin 511–high sites not only holds T cells at such sites but also limits their differentiation to pathogenic Th17 cells. This highlights the importance of the interface between the endothelial monolayer and the underlying BM for modulation of immune cell phenotype.


2002 ◽  
Vol 196 (2) ◽  
pp. 261-267 ◽  
Author(s):  
Megan S. Ford ◽  
Kevin J. Young ◽  
Zhuxu Zhang ◽  
Pamela S. Ohashi ◽  
Li Zhang

Lymphoproliferative (lpr) mice, which lack functional Fas receptor expression and develop autoimmune lymphoproliferative disease, have an accumulation of T cell receptor-αβ+CD4−CD8− (double negative T cells [DNTC]) in the periphery. The function of the accumulating DNTC is not clear. In this study we demonstrate that B6/lpr DNTC can dose dependently kill syngeneic CD8+ and CD4+ T cells from wild-type B6 mice through Fas/Fas ligand interactions in vitro. We also demonstrate that B6/lpr DNTC that are activated and expand in vivo are able to specifically down-regulate allogeneic immune responses mediated by syngeneic Fas+CD4+ and CD8+ T cells in vivo. B6/lpr DNTC that have been preactivated in vivo by infusion of either class I– (bm1) or class II– (bm12) mismatched allogeneic lymphocytes are able to specifically enhance the survival of bm1 or bm12, but not third-party skin allografts when adoptively transferred into naive B6+/+ mice. These findings clearly demonstrate that B6/lpr DNTC have a potent immune regulatory function in vitro and in vivo. They also provide new insights into the mechanisms involved in the development of autoimmune disease in lpr mice.


Sign in / Sign up

Export Citation Format

Share Document