scholarly journals Study on Properties of Drainage SBS Modified Asphalt Mixture with Fiber

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Zhenxia Li ◽  
Tengteng Guo ◽  
Yuanzhao Chen ◽  
Menghan Zhang ◽  
Qingyu Xu ◽  
...  

In order to improve the road performance of drainage SBS modified asphalt mixture, basalt fiber was added to prepare drainage styrene-butadiene-styrene (SBS) modified asphalt mixture. The viscosity-toughness, toughness, and 60°C dynamic viscosity of SBS modified asphalt were tested. The modification effect was evaluated from the perspective of high and low temperature rheological properties by dynamic shear rheometer (DSR) and bending beam rheometer (BBR) tests. The high temperature stability, water stability, low temperature crack resistance, and drainage of basalt fiber SBS drainage asphalt mixture were evaluated and compared with nonfiber SBS drainage asphalt mixture and TPS drainage asphalt mixture. The morphology characteristics of asphalt mixture and the distribution of basalt fiber in the mixture were analyzed from a micro perspective. The results showed the following: the overall performance of basalt fiber is better than that of lignin fiber. SBS modifier content in 7% can meet the requirements of drainage asphalt pavement on asphalt binder. The optimum asphalt content of SBS modified asphalt mixture with basalt fiber content of 0, 0.15, 0.25, and 0.35% is 4.9, 5.05, 5.15, and 5.2%. The fiber is irregularly distributed in the mixture to form a three-dimensional network structure, which has a series skeleton function. It plays a tensile role in the initial cracking of asphalt mixture and prevents further expansion of cracks.

2019 ◽  
Vol 136 ◽  
pp. 03010
Author(s):  
Ma Qingna ◽  
Zhao Zhiqin ◽  
Xu Qian ◽  
Sun Feng

Adding sulphur dilution asphalt modifier SEAM to asphalt mixture is not only a modifier of asphalt mixture, but also an additive of asphalt mixture. When the modifier is added into the asphalt mixture, the road performance of the asphalt mixture can be improved. This paper studies SEAM modified asphalt mixture the Marshall property index, temperature stability, Water stability and fatigue feature in the Laboratory. On the based of the result of the experiment and analysis, SEAM can improve the high temperature stability, Water stability and fatigue feature. But the low temperature stability can’t improve.


2014 ◽  
Vol 638-640 ◽  
pp. 1166-1170 ◽  
Author(s):  
Meng Hui Hao ◽  
Pei Wen Hao

Natural mineral fiber with good performances of mechanical properties and environmentally friendly, pollution-free especially have gradually aroused extensive concern. In order to improve the quality of asphalt pavement, explore the applicability of nature basalt fiber in enhanced asphalt mixture performance, this paper investigates two typical asphalt mixtures and contrastive studies pavement performance of asphalt mixture by high temperature stability, water stability, low temperature anti-cracking and fatigue performance between basalt fiber modified asphalt mixture and base asphalt mixture, and then study the basic principle of fiber reinforcing asphalt mixture. The research show that basalt fiber modified asphalt mixture has a better pavement performance than base asphalt mixture, its dynamic stability is 1.6 times than base asphalt mixture, low temperature anti-cracking performance increased by more 25% and fatigue life is more 2 times than base asphalt mixture. And the basalt fiber can be used in the road engineering as an additive material that enhances the comprehensive performance of asphalt pavement.


2014 ◽  
Vol 919-921 ◽  
pp. 1079-1084 ◽  
Author(s):  
Sen Han ◽  
Dong Yu Niu ◽  
Ya Min Liu ◽  
De Chen ◽  
Deng Wu Liu

The types and contents of styrene-butadiene-styrene (SBS) modifier are two important factors of SBS modified asphalt mixtures. Nowadays, SBS are extensively utilized to modified asphalt in order to improve the performance of the flexible pavement. The objective of this study is to determine a best selection of types and contents of SBS modifier, which can improve high-temperature stability; low-temperature anti-cracking performance and moisture susceptibility of SBS modified asphalt mixture. The mixtures with four types of SBS (Linear A, Linear B, Star A, Star B) and the different contents of each type SBS including Linear SBS of 0%, 3%, 4%, 4.5% and Star SBS of 0%, 3%, 3.5%, 4%, were evaluated for the pavement performance of them under laboratory conditions. Wheel tracking test, beam bending test and freeze-thaw tensile strength test were chosen and carried out to determine high-temperature stability, low-temperature anti-cracking performance and the moisture susceptibility respectively. The laboratory testing results indicate that Star SBS show the more effective effects than Linear SBS to improve the high-temperature stability, low-temperature anti-cracking performance and moisture susceptibility of SBS modified asphalt mixture, and the optimum content of SBS can also play a key role the improvement of the pavement performance.


2014 ◽  
Vol 1065-1069 ◽  
pp. 771-777
Author(s):  
Rui Tian ◽  
Shi Fa Xu ◽  
Zhi Suo ◽  
Guang You Yuan

The reclaimed asphalt pavement (RAP) materials with aged SBS bitumen were limited to applied in unmodified asphalt mixture for low level pavement structure by conventional recycling technology. To overcome this, a new recycling procedure was developed to recover the aged SBS RAP as modified asphalt mixture by warm mixing technology. The Marshall method was applied to design Warm Recycled SBS modified Asphalt Mixture (WRMA) with different RAP content (0, 20%, 30%, 40% and 50%). the performance properties of WRMA and hot recycled SBS modified asphalt mixture (HRMA), such as the high temperature stability, water stability and low temperature performance, were evaluated by the rutting test, low-temperature creep test, beam bending test and water immersion Marshall test, respectively. From the testing results, the properties of WRMA was more than HRMA significantly, and the warm recycling technology could effectively increase the RAP content applied in recycled pavement materials.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2400 ◽  
Author(s):  
Yongchun Cheng ◽  
Di Yu ◽  
Yafeng Gong ◽  
Chunfeng Zhu ◽  
Jinglin Tao ◽  
...  

This study proposed an asphalt mixture modified by basalt fiber and diatomite. Performance of diatomite modified asphalt mixture (DAM), basalt fiber modified asphalt mixture (BFAM), diatomite and basalt fiber compound modified asphalt mixture (DBFAM), and control asphalt mixture (AM) were investigated by experimental methods. The wheel tracking test, low-temperature indirect tensile test, moisture susceptibility test, fatigue test and freeze–thaw cycles test of four kinds of asphalt mixtures were carried out. The results show that the addition of basalt fiber and diatomite can improve the pavement performance. Diatomite has a significant effect on the high temperature stability, moisture susceptibility and resistance to moisture and frost damage under freeze–thaw cycles of asphalt mixture. Basalt fiber has a significant effect on low-temperature cracking resistance of asphalt mixture. Composed modified asphalt mixture has obvious advantages on performance compared to the control asphalt mixture. It will provide a reference for the design of asphalt mixture in seasonal frozen regions.


2011 ◽  
Vol 266 ◽  
pp. 175-179 ◽  
Author(s):  
Yuan Xun Zheng ◽  
Ying Chun Cai ◽  
Ya Min Zhang

In order to discuss the effect of the basalt fiber on reinforcing pavement performance of asphalt mixtures, the optimum dosage of asphalt and fibers were studied by the method of Marshall test and rut test firstly. Then pavement performances of basalt fiber-modified asphalt mixtures were investigated through tests of high temperature stability, water stability and low temperature crack resistance, and compared with that of polyester fiber, xylogen fiber and control mixture. The testing results showed that the pavement performance of fiber-modified asphalt mixture are improved and optimized comparing with control asphalt mixture, and the performance of basalt fiber-modified asphalt mixture with best composition were excelled than those of polyester fiber and xylogen fiber.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1556 ◽  
Author(s):  
Fucheng Guo ◽  
Rui Li ◽  
Shuhua Lu ◽  
Yanqiu Bi ◽  
Haiqi He

Fiber-reinforced asphalt mixture has been widely used in pavement engineering to not only prevent asphalt binder leakage but also improve engineering properties of asphalt mixture. However, the research on three key parameters, namely fiber type, fiber length, and fiber content, which significantly affect the performance of fiber-reinforced asphalt mixture, have seldom been conducted systematically. To determine these three key parameters in the support of the application of fibers in mixture scientifically, three commonly used fibers were selected, basalt fiber, polyester fiber, and lignin fiber, and the testing on fibers, fiber-reinforced asphalt binders, and fiber-reinforced asphalt mixtures was conducted afterwards. The results showed: the favorable fiber type was basalt fiber; the favorable basalt fiber length was 6mm; the engineering properties including high temperature stability, low temperature crack resistance, and water susceptibility were clearly improved by the added basalt fiber, and the optimum basalt fiber content was 0.4 wt.%. The obtained results may be valuable from a practical point of view to engineers and practitioners.


2013 ◽  
Vol 361-363 ◽  
pp. 1681-1688 ◽  
Author(s):  
Hai Sheng Zhao ◽  
Wei Chen ◽  
Xiao Yan Wang

This paper used one kind of organic additive LEADCAP to reduce the compacting temperature of SBS WMA mixture, and compared the WMA mixture compacted by superpave gyratory compactor (SGC) with HMA mixture to determine the compacting temperature of WMA mixture. Rutting test, low temperature bending test, freeze-thaw indirect tension test, Hamburg Wheel-Track test and dynamic modulus were carried out to evaluate the road performance of WMA mixed with LEASCAP. The test result showed that the WMA mixed with LEADCAP had well performed high temperature stability, low temperature stability, water stability, rutting cracking resistance, and high dynamic modulus, the compacting temperature were 127 °C, and affectively reduced the compacting temperature of SBS WMA mixture.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Wenhui Zhao ◽  
Xiangbing Xie ◽  
Guanghui Li ◽  
Jiuguang Geng ◽  
Meng Bao ◽  
...  

To expand the application range of modified asphalt and mixtures and effectively reduce the aggregation of nanomaterials in asphalt, nanocarbon/styrene butadiene styrene (SBS)/rubber powder composite-modified asphalt is proposed. This paper presents a laboratory study on the performance of nanocarbon/copolymer SBS/rubber powder composite-modified asphalt, and nanocarbon particles modified by titanate coupling agents as modifiers are selected. The nanocarbon/copolymer SBS/rubber powder composite-modified asphalt was prepared by a high-speed shearing method. The physical properties and rheological performance were assessed using ductility tests, softening point tests, penetration tests, dynamic shear rheometer (DSR) tests, and bending beam rheometer (BBR) tests. Furthermore, the mixture properties, including the high-temperature stability, low-temperature cracking resistance, moisture stability, and freeze-thaw splitting, were evaluated in the laboratory. The micromorphology of the base asphalt and composite-modified asphalt was examined by scanning electron microscopy (SEM), and the reactions between the modifiers and AH-70 base asphalt were studied by Fourier transform infrared spectroscopy (FTIR). The results reveal that the surface-modified nanocarbon and rubber powder additives substantially increased the softening point and penetration index of the base asphalt, with little obvious influence on the low-temperature performance. In addition, when nanocarbon/copolymer SBS/rubber powder composite-modified asphalt was used, the high-temperature stability and low-temperature cracking resistance of the nanocarbon/copolymer SBS/rubber powder composite-modified asphalt mixture were approximately 1.3 times those of the nanocarbon/rubber powder asphalt mixture. In terms of the micromorphology and reaction, the addition of the nanocarbon can increase the compatibility between the base asphalt and rubber powder, and then the addition of copolymer SBS can improve the structure of nanocarbon (after surface modification)/rubber powder-modified asphalt to form a stable network. Moreover, the physical reaction plays the dominant role in the modification process for the rubber powder and base asphalt, and chemical reactions occur in the modification process for the surface-modified nanocarbon and base asphalt.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Liangchen Qu ◽  
Yingli Gao ◽  
Hui Yao ◽  
Dandan Cao ◽  
Ganpeng Pei ◽  
...  

This study presented the preparation and performance of a kind of high viscosity and elastic recovery asphalt (HVERA) by using some modifiers. The performance of styrene-butadiene-styrene (SBS), rock asphalt (RA), crumb rubber (CR), and stabilizing agent (SA) for different modifiers was investigated by conventional binder test. Effects of modifiers on the high- and low-temperature properties of HVERA were investigated. The dynamic viscosity (DV) test, dynamic shear rheometer (DSR), and bending beam rheometer (BBR) analysis indicated that the high- and low-temperature rheological properties of asphalt were improved attribute to the addition of mixture of modifiers. Meanwhile, the short-term aging and long-term aging were simulated by rolling thin film oven (RTFO) and pressure aging vessel (PAV) tests. Furthermore, the Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) measurements were conducted for obtaining the mechanism and microstructure distribution of the modified asphalt binders. From the test results in this study, it was evident that the addition of SBS, RA, CR, and SA into a neat asphalt binder could both significantly improve the viscosity of the binder at high temperature and lower the creep stiffness at low temperature, which was beneficial to better both high-temperature stability and low-temperature cracking resistance of asphalt pavements. It was proved that the high temperature grade of HVERA could be increased by increasing of RA and a proper percentage of modifiers could be improved by the low temperature grade of HVERA.


Sign in / Sign up

Export Citation Format

Share Document