scholarly journals Neutrophils Promote Larynx Squamous Cell Carcinoma Progression via Activating the IL-17/JAK/STAT3 Pathway

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Tianyi Liu ◽  
Shimin Zong ◽  
Yang Jiang ◽  
Rui Zhao ◽  
Jie Wang ◽  
...  

Laryngeal squamous cell carcinoma (LSCC) is the main type of laryngeal cancer with poor prognosis. Incidence of LSCC increases every year, posing a great threat to human health. The underlying mechanism needs further study. Neutrophils are the most prevalent type of immune cells, which play vital roles in crosstalk between the microenvironment and cancer cells. In our study, we aim to figure out the complex regulation between neutrophils and LSCC. Our experiments showed that LSCC cells could promote the activation and mobility of neutrophils. And, in return, neutrophils enhanced the proliferation, migration, and invasion of LSCC. The subsequent results showed that IL-17 was highly expressed in neutrophil conditioned medium. Block of IL-17 could effectively inhibit the progression of LSCC induced by neutrophils. What is more, the results showed that IL-17 activated the JAK/STAT3 pathway in LSCC. Inhibition of the JAK/STAT3 pathway could significantly block neutrophil-induced LSCC progression. Our research reveals the complex interaction between neutrophils and LSCC cells, providing new ideas for the treatment of LSCC.

2020 ◽  
Vol 29 (4) ◽  
pp. 521-529
Author(s):  
Yong Yin ◽  
Keke Yang ◽  
Juanjuan Li ◽  
Peng Da ◽  
Zhenxin Zhang ◽  
...  

OBJECTIVE: To assess the expression levels of IFITM1 in human tissue samples and laryngeal squamous cell carcinoma (LSCC) cells, and to explore the potential mechanisms of IFITM1 in LSCC progression. METHODS: Quantitative PCR and immunohistochemical (IHC) assays were performed to detect IFITM1 expression in 62 LSCC tissues and corresponding normal tissues. We further detected the effects of IFITM1 on the proliferation, migration and invasion of LSCC cells and NF-κB signaling pathway through colony formation assay, wound healing assay and transwell assay, respectively. RESULTS: We demonstrated the possible involvement of IFITM1 in the progression of LSCC. We found the upregulated expression of IFITM1 in human LSCC tissues and cells, and analyzed the correlations between IFITM1 expression and osteopontin. Our data further confirmed that IFITM1 affected cell proliferation, migration, and invasion of LSCC cells via the regulation of NF-κB signaling pathway. CONCLUSIONS: We investigated the potential involvement of IFITM1 in the progression of LSCC, and therefore confirmed that IFITM1 was a potential therapeutic target for LSCC.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Ying Zheng ◽  
Bowen Zheng ◽  
Xue Meng ◽  
Yuwen Yan ◽  
Jia He ◽  
...  

Abstract Background Tongue squamous cell carcinoma (TSCC) is a most invasive cancer with high mortality and poor prognosis. It is reported that lncRNA DANCR has implications in multiple types of cancers. However, its biological role and underlying mechanism in TSCC progress are not well elucidated. Methods Our present study first investigated the function of DANCR on the proliferation, migration and invasion of TSCC cells by silencing or overexpressing DANCR. Further, the miR-135a-5p-Kruppel-like Factor 8 (KLF8) axis was focused on to explore the regulatory mechanism of DANCR on TSCC cell malignant phenotypes. Xenografted tumor growth using nude mice was performed to examine the role of DANCR in vivo. Results DANCR knockdown reduced the viability and inhibited the migration and invasion of TSCC cells in vitro, while ectopic expression of DANCR induced opposite effects. In vivo, the tumor growth and the expression of matrix metalloproteinase (MMP)-2/9 and KLF8 were also blocked by DANCR inhibition. In addition, we found that miR-135-5p directly targeted DANCR, which was negatively correlated with DANCR on TSCC progression. Its inhibition reversed the beneficial effects of DANCR silence on TSCC malignancies. Furthermore, the expression of KLF8 evidently altered by both DANCR and miR-135a-5p. Silencing KLF8 using its specific siRNA showed that KLF8 was responsible for the induction of miR-135a-5p inhibitor on TSCC cell malignancies and MMP-2/9 expression. Conclusions These findings, for the first time, suggest that DANCR plays an oncogenic role in TSCC progression via targeting miR-135a-5p/KLF8 axis, which provides a promising biomarker and treatment approach for preventing TSCC.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ke Sun ◽  
Guangping Zhang

Abstract Objective Esophageal squamous cell carcinoma (ESCC) is one of the leading causes of cancer-related deaths worldwide. Emerging evidence suggests the involvement of long noncoding RNAs (lncRNAs) in tumorigenesis. LncRNA Cancer Susceptibility Candidate 2 (CASC2) has been demonstrated to act as a tumor suppressor contributing to the development and progression of several cancers. However, the functional significance and underlying mechanism of CASC2 in ESCC progression has not been well elucidated. Methods The expression levels of CASC2 in ESCC tissues were detected by qRT-PCR. CASC2 overexpression and knockdown models were established and used to investigate the functional role of CASC2 in ESCC cells. RIP, RNA pull-down and dual-luciferase assay was used to detect the association between CASC2 and miR-155. The interaction between CASC2 and Suppressor Of Cytokine Signaling 1 (SOCS1) was assessed by RIP and RNA pull-down assays. Results In the present study, we found that CASC2 was significantly downregulated in ESCC tissues and positively correlated with overall survival time of patients with ESCC. Functional assays demonstrated that CASC2 suppressed proliferation, migration and invasion, as well as enhanced drug sensitivity in ESCC cells. Mechanistically, CASC2 inhibited ESCC progression by upregulating the expression of SOCS1 via two different ways. CASC2 acted as competing endogenous RNA (ceRNA) for miR-155 to post-transcriptionally increase SOCS1 expression. On the other hand, CASC2 was capable of interacting with SOCS1 protein and suppressing its degradation. Conclusion Conclusively, these results demonstrated that CASC2 could exert as a tumor suppressive lncRNA in ESCC progression via regulating SOCS1.


2021 ◽  
Author(s):  
Yudong Liu ◽  
Xiaojuan Feng ◽  
Yuexin Tian ◽  
Yanzhuo Zhang ◽  
Huan Cao ◽  
...  

Abstract Background: LncRNA plays an important role in the gene regulatory network and can affect the progress of tumors. LncRNA TM4SF19-AS1 has been reported may associate with the occurrence and development of head and neck squamous cell carcinoma. Methods: LncRNA TM4SF19-AS1 expression in laryngeal squamous cell carcinoma (LSCC) tissue samples was evaluated in TCGA database, and its expression in LSCC tissues and cells was further determined via qRT-PCR. CCK-8, EdU, wound healing and transwell assays were performed to access the cell biological behaviors of TM4SF19-AS1. The downstream regulatory mechanism of TM4SF19-AS1 regulating gene expression was further detected by WGCNA, subcellular location prediction, western blot and dual-luciferase reporter assay.Results: The expression of TM4SF19-AS1 was upregulated in LSCC tissues and positively correlated with tumor-node-metastasis (TNM) stage and lymph node metastasis in LSCC patients. Knockdown of TM4SF19-AS1 suppressed the proliferation, migration and invasion of LSCC cells. Mechanistically, TM4SF19-AS1 acted as a competing endogenous RNA (ceRNA) that directly bound to miR-153-3p, and ITGAV was the direct target of miR-153-3p.Conclusions: LncRNA TM4SF19-AS1 promotes the proliferation, migration and invasion of laryngeal carcinoma by targeting miR-153-3p/ITGAV axis, suggesting that TM4SF19-AS1 could be a potential diagnostic biomarker and an effective target for the treatment for LSCC.


2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Yuan Li ◽  
Chenjuan Tao ◽  
Lili Dai ◽  
Caixia Cui ◽  
Chaohui Chen ◽  
...  

AbstractIntroduction: Laryngeal squamous cell carcinoma (LSCC) is a highly aggressive malignant cancer, but the molecular mechanisms underlying its development and progression remain largely elusive. The purpose of the present study is to investigate the expression profile and functional role of microRNA-625 (miR-625) in LSCC.Materials and methods: LSCC tissues and adjacent normal tissues were collected from 86 LSCC patients. The expression levels of miR-625 and SOX4 mRNA in tissues and cells were detected by RT-qPCR analysis. The expression levels of SOX4 and EMT-related proteins were detected by western blot analysis. In vitro cell proliferation, migration, and invasion were detected by MTT assay, colony formation assay, wound healing assay, and transwell invasion assay, respectively. Dual-luciferase reporter assay was performed to verify the binding relationship between miR-625 and the 3′-UTR of SOX4.Results: The results demonstrated that miR-625 is significantly down-regulated in clinical LSCC tissues, and its low expression may be closely associated with unfavorable clinicopathological characteristics of LSCC patients. Overexpression of miR-625 significantly suppressed the proliferation, migration, invasion, and EMT of LSCC cells. Furthermore, SOX4 was validated as a direct target of miR-625 in LSCC cells, and rescue experiments suggested that restoration of SOX4 blocked the tumor suppressive role of miR-625 in LSCC cells.Conclusions: Taken together, these findings highlighted a critical role of miR-625 in the pathogenesis of LSCC, and restoration of miR-625 could be considered as a potential therapeutic strategy against this fatal disease.


Sign in / Sign up

Export Citation Format

Share Document