scholarly journals Ensemble-Based Machine Learning for Predicting Sudden Human Fall Using Health Data

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Utkarsh Saxena ◽  
Soumen Moulik ◽  
Soumya Ranjan Nayak ◽  
Thomas Hanne ◽  
Diptendu Sinha Roy

We attempt to predict the accidental fall of human beings due to sudden abnormal changes in their health parameters such as blood pressure, heart rate, and sugar level. In medical terminology, this problem is known as Syncope. The primary motivation is to prevent such falls by predicting abnormal changes in these health parameters that might trigger a sudden fall. We apply various machine learning algorithms such as logistic regression, a decision tree classifier, a random forest classifier, K-Nearest Neighbours (KNN), a support vector machine, and a naive Bayes classifier on a relevant dataset and verify our results with the cross-validation method. We observe that the KNN algorithm provides the best accuracy in predicting such a fall. However, the accuracy results of some other algorithms are also very close. Thus, we move one step further and propose an ensemble model, Majority Voting, which aggregates the prediction results of multiple machine learning algorithms and finally indicates the probability of a fall that corresponds to a particular human being. The proposed ensemble algorithm yields 87.42% accuracy, which is greater than the accuracy provided by the KNN algorithm.

2021 ◽  
Vol 23 (11) ◽  
pp. 749-758
Author(s):  
Saranya N ◽  
◽  
Kavi Priya S ◽  

Breast Cancer is one of the chronic diseases occurred to human beings throughout the world. Early detection of this disease is the most promising way to improve patients’ chances of survival. The strategy employed in this paper is to select the best features from various breast cancer datasets using a genetic algorithm and machine learning algorithm is applied to predict the outcomes. Two machine learning algorithms such as Support Vector Machines and Decision Tree are used along with Genetic Algorithm. The proposed work is experimented on five datasets such as Wisconsin Breast Cancer-Diagnosis Dataset, Wisconsin Breast Cancer-Original Dataset, Wisconsin Breast Cancer-Prognosis Dataset, ISPY1 Clinical trial Dataset, and Breast Cancer Dataset. The results exploit that SVM-GA achieves higher accuracy of 98.16% than DT-GA of 97.44%.


Author(s):  
Komal Bhaskar Thube

A programming language is a computer language developers use to develop software programs, scripts, or other sets of instruction for computers to execute. It is difficult to determine which programming language is widely used. In our work, I have analyzed and compared the classification results of various machine learning models and find out which programming language is widely used by developers. I have used Support Vector Machine (SVM), K neighbor classifier (KNN),Decision Tree Classifier(CART) for our comparative study. My task is to analyze different data and to classify them for the efficiency of each algorithm in terms of accuracy, precision, recall, and F1 Score. My best accuracy was 94.29% percent which was found using SVM. These techniques are coded in python and executed in Jupyter NoteBook, the Scientific Python Development Environment. Our experiments have shown that SVM is the best for predictive analysis and from our study that SVM is the well-suited algorithm for the prediction of the most widely used programming language.


2020 ◽  
Vol 9 (1) ◽  
pp. 1894-1899 ◽  

The number of internet users has increased exponentially over the years and so have increased intrusive activities significantly. To detect an intrusion attack in a system connected over a network is one of the most challenging tasks in today’s world. A significant number of techniques have been developed which are based on machine learning approaches to detect these intrusion attacks. Even though these techniques are good, they are not good enough to detect all kinds of attacks. In this paper, the analysis of different machine learning algorithm will be performed on the NSL-KDD dataset with pre-processing steps like One-hot encoding, feature selection and random sampling to use in different machine learning models to find the best performing model to detect these attacks. The attacks are from the datasets are classified into four types of attacks: Probe, DoS, U2R, R2L while the non- attack is the Normal. The dataset is in two parts: KDD-Train and KDD-Test. The dataset is trained and tested to find accuracy and understand the performance of different machine learning algorithms and compare them. The Machine Learning algorithms used are Naive Bayes Classifier, Decision Tree Classifier, Random Forest Classifier, KNeighbours Classifier, Logistic Regression, SVM Classifier, Voting Classifier. These techniques are compared according to their capability to detect the attacks. This comparison will help to find the algorithm which would work the best to detect different kinds of intrusion attacks.


Author(s):  
Sheikh Shehzad Ahmed

The Internet is used practically everywhere in today's digital environment. With the increased use of the Internet comes an increase in the number of threats. DDoS attacks are one of the most popular types of cyber-attacks nowadays. With the fast advancement of technology, the harm caused by DDoS attacks has grown increasingly severe. Because DDoS attacks may readily modify the ports/protocols utilized or how they function, the basic features of these attacks must be examined. Machine learning approaches have also been used extensively in intrusion detection research. Still, it is unclear what features are applicable and which approach would be better suited for detection. With this in mind, the research presents a machine learning-based DDoS attack detection approach. To train the attack detection model, we employ four Machine Learning algorithms: Decision Tree classifier (ID3), k-Nearest Neighbors (k-NN), Logistic Regression, and Random Forest classifier. The results of our experiments show that the Random Forest classifier is more accurate in recognizing attacks.


Activity recognition in humans is one of the active challenges that finds its application in numerous fields such as, medical health care, military, manufacturing, assistive techniques and gaming. Due to the advancements in technologies the usage of smartphones in human lives become inevitable. The sensors in the smartphones help us to measure the essential vital parameters. These measured parameters enable us to monitor the activities of humans, which we call as human activity recognition. In this paper, we have proposed an automatic human activity recognition system that independently recognizes the actions of the humans. Four deep learning approaches and thirteen different machine learning classifiers such as Multilayer Perceptron, Random Forest, Support Vector Machine, Decision Tree Classifier, AdaBoost Classifier, Gradient Boosting Classifier and others are applied to identify the efficient classifier for human activity recognition. Our proposed system is able to recognize the activities such as Laying, Sitting, Standing, Walking, Walking downstairs and Walking upstairs. Benchmark dataset has been used to evaluate all the classifiers implemented. We have investigated all these classifiers to identify a best suitable classifier for this dataset. The results obtained show that, the Multilayer Perceptron has obtained 98.46% of overall accuracy in detecting the activities. The second-best performance was observed when the classifiers are combined together.


Author(s):  
Y. Dileep Sean ◽  
D.D. Smith ◽  
V.S.P. Bitra ◽  
Vimala Bera ◽  
Sk. Nafeez Umar

Automated defect detection of fruits using computer vision and machine learning concepts has ‎become a significant area of research. In ‎this work, working prototype hardware model of conveyor with PC is designed, constructed and implemented to analyze the fruit quality. The prototype consists of low-cost microcontrollers, USB camera and MATLAB user interface. The automated classification model rejects or accepts the fruit based on the quality i.e., good (ripe, unripe) and bad. For the classification of fruit quality, machine learning algorithms such as Support Vector Machine, KNN, Random Forest classifier, Decision Tree classifier and ANN are used. The dataset used in this work consists of the following fruit varieties i.e., apple, orange, tomato, guava, lemon, and pomegranate. We trained, tested and ‎compared the performance of these five machine learning approaches and found out that the ANN based fruit detection performs better. The overall accuracy obtained by the ANN model for the dataset is 95.6%. In addition, the response time of the system is 50 seconds per fruit which is very low. Therefore, it will be very suitable and useful for small-scale industries and farmers to grow up their business.


Author(s):  
Pankaj Bhowmik ◽  
◽  
Pulak Chandra Bhowmik ◽  
U. A. Md. Ehsan Ali ◽  
Md. Sohrawordi

A sizeable number of women face difficulties during pregnancy, which eventually can lead the fetus towards serious health problems. However, early detection of these risks can save both the invaluable life of infants and mothers. Cardiotocography (CTG) data provides sophisticated information by monitoring the heart rate signal of the fetus, is used to predict the potential risks of fetal wellbeing and for making clinical conclusions. This paper proposed to analyze the antepartum CTG data (available on UCI Machine Learning Repository) and develop an efficient tree-based ensemble learning (EL) classifier model to predict fetal health status. In this study, EL considers the Stacking approach, and a concise overview of this approach is discussed and developed accordingly. The study also endeavors to apply distinct machine learning algorithmic techniques on the CTG dataset and determine their performances. The Stacking EL technique, in this paper, involves four tree-based machine learning algorithms, namely, Random Forest classifier, Decision Tree classifier, Extra Trees classifier, and Deep Forest classifier as base learners. The CTG dataset contains 21 features, but only 10 most important features are selected from the dataset with the Chi-square method for this experiment, and then the features are normalized with Min-Max scaling. Following that, Grid Search is applied for tuning the hyperparameters of the base algorithms. Subsequently, 10-folds cross validation is performed to select the meta learner of the EL classifier model. However, a comparative model assessment is made between the individual base learning algorithms and the EL classifier model; and the finding depicts EL classifiers’ superiority in fetal health risks prediction with securing the accuracy of about 96.05%. Eventually, this study concludes that the Stacking EL approach can be a substantial paradigm in machine learning studies to improve models’ accuracy and reduce the error rate.


2021 ◽  
Vol 37 ◽  
pp. 01014
Author(s):  
K Devendran ◽  
S K Thangarasu ◽  
P Keerthika ◽  
R Manjula Devi ◽  
B K Ponnarasee

In this world, people are moving with lightning speed. Stress has become a usual thing we experience in our day to day routine. Some factors like work tension, emotional obstacles, brutality, etc lead to stress. Many health issues like headaches, heart problems, depression, etc and psychological issues arise in human beings due to stress. Music therapy gives qualitative results in balancing the physical and psychological issues. Music therapy is an expressive type of art therapy. There are many beneficial effects achieved through music therapy like relaxation, maintain blood pressure level, cure on medical disorders, stability in mood, and improve memory and sleep. Here we aimed to establish the main predictive factors of music listening’s relaxation and the prediction of music for music therapy using various machine learning algorithms such as Decision tree, Random Forest, Artificial Neural Network (ANN), Support Vector Machine (SVM) and hybrid of SVM ANN algorithm. The accuracy of these different methods is critically examined with the help of the accuracy performance metric. Various factors like age, gender, education level, music choice, visual analog scale score before and after listening to music for both individual and therapist suggestions on music are considered for prediction. Our study revealed that SVM-ANN hybrid classifier performance is much better than other machine learning algorithms.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4324
Author(s):  
Moaed A. Abd ◽  
Rudy Paul ◽  
Aparna Aravelli ◽  
Ou Bai ◽  
Leonel Lagos ◽  
...  

Multifunctional flexible tactile sensors could be useful to improve the control of prosthetic hands. To that end, highly stretchable liquid metal tactile sensors (LMS) were designed, manufactured via photolithography, and incorporated into the fingertips of a prosthetic hand. Three novel contributions were made with the LMS. First, individual fingertips were used to distinguish between different speeds of sliding contact with different surfaces. Second, differences in surface textures were reliably detected during sliding contact. Third, the capacity for hierarchical tactile sensor integration was demonstrated by using four LMS signals simultaneously to distinguish between ten complex multi-textured surfaces. Four different machine learning algorithms were compared for their successful classification capabilities: K-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), and neural network (NN). The time-frequency features of the LMSs were extracted to train and test the machine learning algorithms. The NN generally performed the best at the speed and texture detection with a single finger and had a 99.2 ± 0.8% accuracy to distinguish between ten different multi-textured surfaces using four LMSs from four fingers simultaneously. The capability for hierarchical multi-finger tactile sensation integration could be useful to provide a higher level of intelligence for artificial hands.


2021 ◽  
Vol 13 (3) ◽  
pp. 67
Author(s):  
Eric Hitimana ◽  
Gaurav Bajpai ◽  
Richard Musabe ◽  
Louis Sibomana ◽  
Jayavel Kayalvizhi

Many countries worldwide face challenges in controlling building incidence prevention measures for fire disasters. The most critical issues are the localization, identification, detection of the room occupant. Internet of Things (IoT) along with machine learning proved the increase of the smartness of the building by providing real-time data acquisition using sensors and actuators for prediction mechanisms. This paper proposes the implementation of an IoT framework to capture indoor environmental parameters for occupancy multivariate time-series data. The application of the Long Short Term Memory (LSTM) Deep Learning algorithm is used to infer the knowledge of the presence of human beings. An experiment is conducted in an office room using multivariate time-series as predictors in the regression forecasting problem. The results obtained demonstrate that with the developed system it is possible to obtain, process, and store environmental information. The information collected was applied to the LSTM algorithm and compared with other machine learning algorithms. The compared algorithms are Support Vector Machine, Naïve Bayes Network, and Multilayer Perceptron Feed-Forward Network. The outcomes based on the parametric calibrations demonstrate that LSTM performs better in the context of the proposed application.


Sign in / Sign up

Export Citation Format

Share Document