scholarly journals Out-of-Plane Deformation Analysis of the Thin-Walled Closed Curved Box Girder under the Temperature Gradient

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zeying Yang ◽  
Chenghe Wang ◽  
Yinglin Sun ◽  
Yangyudong Liu ◽  
Zhengquan Cheng ◽  
...  

For calculating the thin-walled closed curved box girder caused by the temperature gradient of the internal force and displacement, based on the fundamental differential equation of the curve beam and the principle of minimum energy, set a reverse statically indeterminate simply supported curve beam as the basic structure, consider the warping effect of the closed curve box girder, and put forward a kind of plane curve beam temperature deformation simple analytical calculation method. Compared with the finite element calculation results, the relative error of the analytical calculation results is less than 5%. It is concluded that the analytical method has sufficient accuracy in calculating the out-of-plane deformation of the thin-walled closed curved box girder under the temperature gradient.

2015 ◽  
Vol 15 (08) ◽  
pp. 1540022 ◽  
Author(s):  
Rodrigo Gonçalves ◽  
Nuno Peres ◽  
Rui Bebiano ◽  
Dinar Camotim

This paper presents the results of an investigation concerning the free vibration behavior (undamped natural frequencies and vibration mode shapes) of thin-walled beams with rectangular multi-cell cross-section (assemblies of parallel rectangular cells in a single direction). Besides local (plate-type) and global (flexural, torsional and extensional) vibration modes, attention is paid to the relatively less-known distortional vibration modes, which involve cross-section out-of-plane (warping) and in-plane deformation, including displacements of the wall intersections. A computationally efficient semi-analytical Generalized Beam Theory (GBT) approach is employed to obtain insight into the mechanics of the problem. In particular, the intrinsic modal decomposition features of GBT — the fact that the beam is described using a hierarchical set of relevant cross-section deformation modes — are exploited to identify and categorize the most relevant vibration modes and deformation mode couplings.


2014 ◽  
Vol 578-579 ◽  
pp. 954-959
Author(s):  
Hua Jun Ma ◽  
Xin Chong Chen

Main bridge of Nanning Bridge is taken as Research Object. Using the finite element program ANSYS, space finite element model of an arch bridge with two inclined thin-walled steel box ribs is build, stability safety factor of the bridge is calculated, eigenvalue buckling analysis and non-linear buckling analysis of inclined thin-walled ribs are carried out, and stability performance is discussed. The result shows that stability problems of this bridge mainly occur on the ribs and are out-of-plane buckling in general, and horizontal loads have greater influences on out-of-plane buckling. The calculation results can provide parameters for construction, health detection and maintenance in the operational phase of the bridge.


2021 ◽  
pp. 004051752110134
Author(s):  
Cerise A Edwards ◽  
Stephen L Ogin ◽  
David A Jesson ◽  
Matthew Oldfield ◽  
Rebecca L Livesey ◽  
...  

Military personnel use protective armor systems that are frequently exposed to low-level damage, such as non-ballistic impact, wear-and-tear from everyday use, and damage during storage of equipment. The extent to which such low-level pre-damage could affect the performance of an armor system is unknown. In this work, low-level pre-damage has been introduced into a Kevlar/phenolic resin-starved composite panel using tensile loading. The tensile stress–strain behavior of this eight-layer material has been investigated and has been found to have two distinct regions; these have been understood in terms of the microstructure and damage within the composite panels investigated using micro-computed tomography and digital image correlation. Ballistic testing carried out on pristine (control) and pre-damaged panels did not indicate any difference in the V50 ballistic performance. However, an indication of a difference in response to ballistic impact was observed; the area of maximal local out-of-plane deformation for the pre-damaged panels was found to be twice that of the control panels, and the global out-of-plane deformation across the panel was also larger.


2021 ◽  
Vol 11 (11) ◽  
pp. 4981
Author(s):  
Andreas Tausendfreund ◽  
Dirk Stöbener ◽  
Andreas Fischer

In the concept of the process signature, the relationship between a material load and the modification remaining in the workpiece is used to better understand and optimize manufacturing processes. The basic prerequisite for this is to be able to measure the loads occurring during the machining process in the form of mechanical deformations. Speckle photography is suitable for this in-process measurement task and is already used in a variety of ways for in-plane deformation measurements. The shortcoming of this fast and robust measurement technique based on image correlation techniques is that out-of-plane deformations in the direction of the measurement system cannot be detected and increases the measurement error of in-plane deformations. In this paper, we investigate a method that infers local out-of-plane motions of the workpiece surface from the decorrelation of speckle patterns and is thus able to reconstruct three-dimensional deformation fields. The implementation of the evaluation method enables a fast reconstruction of 3D deformation fields, so that the in-process capability remains given. First measurements in a deep rolling process show that dynamic deformations underneath the die can be captured and demonstrate the suitability of the speckle method for manufacturing process analysis.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Shuangle Wu ◽  
Fangyuan Sun ◽  
Haotian Xie ◽  
Qihan Zhao ◽  
Peizheng Yan ◽  
...  

2010 ◽  
Vol 29-32 ◽  
pp. 1313-1316
Author(s):  
Yu Ji Chen

In order to study the buckling mechanics behaviour of the out-of-plane stability of arches with the double symmetry axis section, by mean of potential variational theories, considering the out-of-plane deformation of arches, the out-of-plane stability governing equation of arches was obtained. The problem was solved by the spline function allocating point method. An example was calculated with this paper method. It is shown by comparing the result of this paper with the others that the paper method is reliable and accurate.


1963 ◽  
Vol 30 (1) ◽  
pp. 134-135
Author(s):  
E. A. Utecht

Curves are presented which give stress intensification factors for curved, thin-walled circular tubes under various combinations of in-plane and out-of-plane bending moments.


Sign in / Sign up

Export Citation Format

Share Document