scholarly journals Wet Modal Analyses of Various Length Coaxial Sump Pump Rotors with Acoustic-Solid Coupling

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Guangjie Peng ◽  
Zhuoran Zhang ◽  
Ling Bai

The dynamic characteristics of the rotor components were determined using a first-order modal model of the rotor components for various sump pump shaft lengths for actual working environments. By employing ANSYS-Workbench software, this paper uses a fluid-solid coupling analysis to calculate the reaction forces of the fluid on the rotor with results, which is then used in dry and wet modal analyses of the rotor parts to calculate the vibration modal characteristics with and without prestresses. The differences between the wet and dry modal characteristics were compared and investigated by ANSYS. The results show that increasing the sump pump shaft length reduces the first-order natural frequency of the prestressed rotor components. The structure also experiences stress stiffening, which is more obvious in the high-order modes. The natural frequency of the rotor in the wet mode is about 16% less than that in the dry mode for the various shaft lengths due to the added mass of the water on the surface which reduces the natural frequency. In the wet modal analysis, when the structure is in a different fluid medium, the influence of its modal distribution will also change, this is because the additional mass produced by the fluid medium of different density on the structure surface is different. Thus, the wet modal analysis of the rotor is important for more accurate dynamic analyses.

1991 ◽  
Vol 113 (2) ◽  
pp. 209-218 ◽  
Author(s):  
D. W. Childs

An analysis is presented for the perturbed flow in the leakage path between a shrouded-pump impeller and its housing. A bulk-flow model is used for the analysis consisting of the path-momentum, circumferential-momentum, and continuity equations. Shear stress at the impeller and housing surfaces are modeled according to Hirs’ turbulent lubrication model. The governing equations have been used earlier to examine rotordynamic reaction forces developed by lateral and axial impeller motion. A perturbation expansion of the governing equations in the eccentricity ratio yields a set of zeroth and first-order governing equations. The zeroth-order equations define the leakage rate, and the velocity and pressure distributions for a centered impeller position. The first-order equations define the perturbations in the velocity and pressure distributions due to axial or lateral motion of the impeller. Prior analyses by the author of the perturbation equation have examined the reaction forces on the shroud due to rotor motion. These analyses have produced “resonance” phenomena associated with the centrifugal-acceleration body forces in the fluid field. In the present analysis, an algorithm is developed and demonstrated for calculating the complex eigenvalues and eigenvectors associated with these resonances. First-and second-natural-frequency eigensolutions are presented for mode shapes corresponding to lateral excitation. First-natural-frequency eigensolutions are also presented for mode shapes corresponding to axial excitation.


2018 ◽  
Vol 175 ◽  
pp. 03046 ◽  
Author(s):  
Meiling Qiu ◽  
Dafang Wang ◽  
Hui Wei ◽  
Xiu Liang ◽  
Yue Ma

When the motor works normally, its base will vibrate. The structure will generate the resonance and result in damage of the mechanical equipment when the vibration frequency reaches the natural frequency. The article which is based on the modal analysis of the motor base compares the natural frequencies in different boundary constraints in order to select appropriate way to install the motor base, and optimizes the motor base by contrasting different effects on the natural frequencies of the different thickness of the ribbed plates for selecting reasonable structure to prevent resonance.


1995 ◽  
Vol 62 (3) ◽  
pp. 685-691 ◽  
Author(s):  
F. Ma ◽  
T. K. Caughey

The coefficients of a linear nonconservative system are arbitrary matrices lacking the usual properties of symmetry and definiteness. Classical modal analysis is extended in this paper so as to apply to systems with nonsymmetric coefficients. The extension utilizes equivalence transformations and does not require conversion of the equations of motion to first-order forms. Compared with the state-space approach, the generalized modal analysis can offer substantial reduction in computational effort and ample physical insight.


2012 ◽  
Vol 499 ◽  
pp. 238-242
Author(s):  
Li Zhang ◽  
Hong Wu ◽  
Yan Jue Gong ◽  
Shuo Zhang

Based on the 3D model of refrigeration's compressor by Pro/E software, the analyses of theoretical and experimental mode are carried out in this paper. The results show that the finite element models of compressor have high precision dynamic response characteristics and the natural frequency of the compressor, based on experimental modal analysis, can be accurately obtained, which will contribute to further dynamic designs of mechanical structures.


2004 ◽  
Vol 3 (2) ◽  
pp. 177-194 ◽  
Author(s):  
Lay Menn Khoo ◽  
P. Raju Mantena ◽  
Prakash Jadhav

Author(s):  
Dumitru I. Caruntu ◽  
Jose C. Solis Silva

The nonlinear response of an electrostatically actuated cantilever beam microresonator sensor for mass detection is investigated. The excitation is near the natural frequency. A first order fringe correction of the electrostatic force, viscous damping, and Casimir effect are included in the model. The dynamics of the resonator is investigated using the Reduced Order Model (ROM) method, based on Galerkin procedure. Steady-state motions are found. Numerical results for uniform microresonators with mass deposition and without are reported.


Author(s):  
Guriy Kushner ◽  
Victor Andreevich Mamontov

One of the most significant factors affecting the natural frequency of transverse vibrations of shaft-slide bearing systems is the stiffness coefficient of the slide bearing. The need to consider the influence of heterogeneity of stiffness coefficient of the bearing on its natural frequency is caused by the fact that when the bearing is worn, the modulus of longitudinal elasticity of the material changes, and since the bearing wears unevenly, the non-uniform distribution of the stiffness coefficient occurs. The problem of determining the natural frequency of transverse vibrations of a ship propeller shaft based on the foundation with a variable stiffness coefficient along the length has been studied. The differential equation of the propeller shaft vibrations written taking into account the stiffness coefficient variable along the shaft length is considered. It has been noted that, in the general case, this equation is a fourth-order partial differential equation and cannot be integrated in quadratures for an arbitrary stiffness distribution function along the shaft length. A numerical-analytical method for determining the natural frequency of a system based on approximation of the stiffness distribution function by a piecewise-linear function is proposed. The method is applied to calculate the natural frequencies of the pipeline section taking into account the functions describing the change in the stiffness coefficient. The proposed method allows to consider the section of the shafting enclosed in the stern bearing, subject to the non-uniform distribution of the stiffness coefficient of the bearing, and is the basis for improving the accuracy of finding the true natural frequency of transverse vibrations of the shafting.


This article presents a critical review of recent research done on crack identification and localization in structural beams using numerical and experimental modal analysis. Crack identification and localization in beams are very crucial in various engineering applications such as ship propeller shafts, aircraft wings, gantry cranes, and Turbo machinery blades. It is necessary to identify the damage in time; otherwise, there may be serious consequences like a catastrophic failure of the engineering structures. Experimental modal analysis is used to study the vibration characteristics of structures like natural frequency, damping and mode shapes. The modal parameters like natural frequency and mode shapes of undamaged and damaged beams are different. Based on this reason, structural damage can be detected, especially in beams. From the review of various research papers, it is identified that a lot of the research done on beams with open transverse crack. Crack location is identified by tracking variation in natural frequencies of a healthy and cracked beam


2021 ◽  
Vol 12 (1) ◽  
pp. 689-700
Author(s):  
Ao Lei ◽  
Chuan-Xue Song ◽  
Yu-Long Lei ◽  
Yao Fu

Abstract. To make vehicles more reliable and efficient, many researchers have tried to improve the rotor performance. Although certain achievements have been made, the previous finite element model did not reflect the historical process of the motor rotor well, and the rigidity and mass in rotor optimization are less discussed together. This paper firstly introduces fractional order into a finite element model to conduct the harmonic response analysis. Then, we propose an optimal design framework of a rotor. In the framework, objective functions of rigidity and mass are defined, and the relationship between high rigidity and the first-order frequency is discussed. In order to find the optimal values, an accelerated optimization method based on response surface (ARSO) is proposed to find the suitable design parameters of rigidity and mass. Because the higher rigidity can be transformed into the first-order natural frequency by objective function, this paper analyzes the first-order frequency and mass of a motor rotor in the experiment. The results proved that not only is the fractional model effective, but also the ARSO can optimize the rotor structure. The first-order natural frequency of asynchronous motor rotor is increased by 11.2 %, and the mass is reduced by 13.8 %, which can realize high stiffness and light mass of asynchronous motor rotors.


2012 ◽  
Vol 239-240 ◽  
pp. 473-477 ◽  
Author(s):  
Guo Jian Huang ◽  
Cheng Zhong He ◽  
Xin Hua Wang

Old giant cranes in corrosive environment are in serious hidden danger of structural instability and failure, the modal analysis is an important part of dynamics analysis in the Crane Safety Evaluation to guarantee the safety of cranes. A Modal Analysis of a 28-year old 100t giant shipbuilding tower crane was done using ANSYS. Comparing with the vibration frequencies and modal shapes, Modal analysis shows that the Natural Frequency of the crane reduces from 1.0024Hz to 1.0003Hz, beside all the Modal vibration frequencies (first 10 Order) of the crane are lower than the designed value, means the strength of the tower crane has decreased; the Modal Vibration Frequencies (first 10 Order) of the tower crane are between 1 Hz and 2 Hz. The Mmodal analysis provided theoretical basis for safe use, design and transformation of this crane.


Sign in / Sign up

Export Citation Format

Share Document