scholarly journals Muskmelon Maturity Stage Classification Model Based on CNN

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Huamin Zhao ◽  
Defang Xu ◽  
Olarewaju Lawal ◽  
Shujuan Zhang

How to quickly and accurately judge the maturity of muskmelon is very important to consumers and muskmelon sorting staff. This paper presents a novel approach to solve the difficulty of muskmelon maturity stage classification in greenhouse and other complex environments. The color characteristics of muskmelon were used as the main feature of maturity discrimination. A modified 29-layer ResNet was applied with the proposed two-way data augmentation methods for the maturity stages of muskmelon classification using indoor and outdoor datasets to create a robust classification model that can generalize better. The results showed that code data augmentation which is the first way caused more performance degradation than input image augmentation—the second way. This established the effectiveness of the code data augmentation compared to image augmentation. Nevertheless, the two-way data augmentations including the combination of outdoor and indoor datasets to create a classification model revealed an excellent performance of F1 score ∼99%, and hence the model is applicable to computer-based platform for quick muskmelon stages of maturity classification.

2021 ◽  
Vol 5 (2) ◽  
pp. 1-9
Author(s):  
Fattah Alizadeh ◽  
Sazan Luqman

The increasing number of cars inside cities creates problems in traffic control. This issue can be solved by implementing a computer-based automatic system known as the Automatic Car Plate Recognition System (ACPRS). The main purpose of the current paper is to propose an automatic system to detect, extract, segment, and recognize the car plate numbers in the Kurdistan Region of Iraq (KRI). To do so, a frontal image of cars is captured and used as an input of the system. After applying the required pre-processing steps, the SURF descriptor is utilized to detect and extract the car plate from the whole input image. After segmentation of the extracted plate, an efficient projection-based technique is being exploited to describe the available digits and the city name of the registered car plate. The system is evaluated over 200 sample images, which are taken under various testing conditions. The best accuracy of the proposed system, under the controlled condition, shows the high performance and accuracy of the system which is 94%.


2020 ◽  
Vol 34 (03) ◽  
pp. 2594-2601
Author(s):  
Arjun Akula ◽  
Shuai Wang ◽  
Song-Chun Zhu

We present CoCoX (short for Conceptual and Counterfactual Explanations), a model for explaining decisions made by a deep convolutional neural network (CNN). In Cognitive Psychology, the factors (or semantic-level features) that humans zoom in on when they imagine an alternative to a model prediction are often referred to as fault-lines. Motivated by this, our CoCoX model explains decisions made by a CNN using fault-lines. Specifically, given an input image I for which a CNN classification model M predicts class cpred, our fault-line based explanation identifies the minimal semantic-level features (e.g., stripes on zebra, pointed ears of dog), referred to as explainable concepts, that need to be added to or deleted from I in order to alter the classification category of I by M to another specified class calt. We argue that, due to the conceptual and counterfactual nature of fault-lines, our CoCoX explanations are practical and more natural for both expert and non-expert users to understand the internal workings of complex deep learning models. Extensive quantitative and qualitative experiments verify our hypotheses, showing that CoCoX significantly outperforms the state-of-the-art explainable AI models. Our implementation is available at https://github.com/arjunakula/CoCoX


2020 ◽  
pp. 1-14
Author(s):  
Esraa Hassan ◽  
Noha A. Hikal ◽  
Samir Elmuogy

Nowadays, Coronavirus (COVID-19) considered one of the most critical pandemics in the earth. This is due its ability to spread rapidly between humans as well as animals. COVID_19 expected to outbreak around the world, around 70 % of the earth population might infected with COVID-19 in the incoming years. Therefore, an accurate and efficient diagnostic tool is highly required, which the main objective of our study. Manual classification was mainly used to detect different diseases, but it took too much time in addition to the probability of human errors. Automatic image classification reduces doctors diagnostic time, which could save human’s life. We propose an automatic classification architecture based on deep neural network called Worried Deep Neural Network (WDNN) model with transfer learning. Comparative analysis reveals that the proposed WDNN model outperforms by using three pre-training models: InceptionV3, ResNet50, and VGG19 in terms of various performance metrics. Due to the shortage of COVID-19 data set, data augmentation was used to increase the number of images in the positive class, then normalization used to make all images have the same size. Experimentation is done on COVID-19 dataset collected from different cases with total 2623 where (1573 training,524 validation,524 test). Our proposed model achieved 99,046, 98,684, 99,119, 98,90 In terms of Accuracy, precision, Recall, F-score, respectively. The results are compared with both the traditional machine learning methods and those using Convolutional Neural Networks (CNNs). The results demonstrate the ability of our classification model to use as an alternative of the current diagnostic tool.


Diagnostics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 121
Author(s):  
Roberta Risoluti ◽  
Giuseppina Gullifa ◽  
Vittorio Fineschi ◽  
Paola Frati ◽  
Stefano Materazzi

Chronothanatology has always been a challenge in forensic sciences. Therefore, the importance of a multidisciplinary approach for the characterization of matrices (organs, tissues, or fluids) that respond linearly to the postmortem interval (PMI) is emerging increasingly. The vitreous humor is particularly suitable for studies aimed at assessing time-related modifications because it is topographically isolated and well-protected. In this work, a novel approach based on thermogravimetry and chemometrics was used to estimate the time since death in the vitreous humor and to collect a databank of samples derived from postmortem examinations after medico–legal evaluation. In this study, contaminated and uncontaminated specimens with tissue fragments were included in order to develop a classification model to predict time of death based on partial least squares discriminant analysis (PLS-DA) that was as robust as possible. Results demonstrate the possibility to correctly predict the PMI even in contaminated samples, with an accuracy not lower than 70%. In addition, the correlation coefficient of the measured versus predicted outcomes was found to be 0.9978, confirming the ability of the model to extend its feasibility even to such situations involving contaminated vitreous humor.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 757
Author(s):  
Yongke Pan ◽  
Kewen Xia ◽  
Li Wang ◽  
Ziping He

The dataset distribution of actual logging is asymmetric, as most logging data are unlabeled. With the traditional classification model, it is hard to predict the oil and gas reservoir accurately. Therefore, a novel approach to the oil layer recognition model using the improved whale swarm algorithm (WOA) and semi-supervised support vector machine (S3VM) is proposed in this paper. At first, in order to overcome the shortcomings of the Whale Optimization Algorithm applied in the parameter-optimization of the S3VM model, such as falling into a local optimization and low convergence precision, an improved WOA was proposed according to the adaptive cloud strategy and the catfish effect. Then, the improved WOA was used to optimize the kernel parameters of S3VM for oil layer recognition. In this paper, the improved WOA is used to test 15 benchmark functions of CEC2005 compared with five other algorithms. The IWOA–S3VM model is used to classify the five kinds of UCI datasets compared with the other two algorithms. Finally, the IWOA–S3VM model is used for oil layer recognition. The result shows that (1) the improved WOA has better convergence speed and optimization ability than the other five algorithms, and (2) the IWOA–S3VM model has better recognition precision when the dataset contains a labeled and unlabeled dataset in oil layer recognition.


2021 ◽  
Vol 11 (12) ◽  
pp. 5383
Author(s):  
Huachen Gao ◽  
Xiaoyu Liu ◽  
Meixia Qu ◽  
Shijie Huang

In recent studies, self-supervised learning methods have been explored for monocular depth estimation. They minimize the reconstruction loss of images instead of depth information as a supervised signal. However, existing methods usually assume that the corresponding points in different views should have the same color, which leads to unreliable unsupervised signals and ultimately damages the reconstruction loss during the training. Meanwhile, in the low texture region, it is unable to predict the disparity value of pixels correctly because of the small number of extracted features. To solve the above issues, we propose a network—PDANet—that integrates perceptual consistency and data augmentation consistency, which are more reliable unsupervised signals, into a regular unsupervised depth estimation model. Specifically, we apply a reliable data augmentation mechanism to minimize the loss of the disparity map generated by the original image and the augmented image, respectively, which will enhance the robustness of the image in the prediction of color fluctuation. At the same time, we aggregate the features of different layers extracted by a pre-trained VGG16 network to explore the higher-level perceptual differences between the input image and the generated one. Ablation studies demonstrate the effectiveness of each components, and PDANet shows high-quality depth estimation results on the KITTI benchmark, which optimizes the state-of-the-art method from 0.114 to 0.084, measured by absolute relative error for depth estimation.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 624
Author(s):  
Stefan Rohrmanstorfer ◽  
Mikhail Komarov ◽  
Felix Mödritscher

With the always increasing amount of image data, it has become a necessity to automatically look for and process information in these images. As fashion is captured in images, the fashion sector provides the perfect foundation to be supported by the integration of a service or application that is built on an image classification model. In this article, the state of the art for image classification is analyzed and discussed. Based on the elaborated knowledge, four different approaches will be implemented to successfully extract features out of fashion data. For this purpose, a human-worn fashion dataset with 2567 images was created, but it was significantly enlarged by the performed image operations. The results show that convolutional neural networks are the undisputed standard for classifying images, and that TensorFlow is the best library to build them. Moreover, through the introduction of dropout layers, data augmentation and transfer learning, model overfitting was successfully prevented, and it was possible to incrementally improve the validation accuracy of the created dataset from an initial 69% to a final validation accuracy of 84%. More distinct apparel like trousers, shoes and hats were better classified than other upper body clothes.


2020 ◽  
Author(s):  
Tae-jun Choi ◽  
Honggu Lee

AbstractDefense responses are a highly conserved behavioral response set across species. Defense responses motivate organisms to detect and react to threats and potential danger as a precursor to anxiety. Accurate measurement of temporal defense responses is important for understanding clinical anxiety and mood disorders, such as post-traumatic stress disorder, obsessive compulsive disorder, and generalized anxiety disorder. Within these conditions, anxiety is defined as a state of prolonged defense response elicitation to a threat that is ambiguous or unspecific. In this study, we aimed to develop a data-driven approach to capture temporal defense response elicitation through a multi-modality data analysis of physiological signals, including electroencephalogram (EEG), electrocardiogram (ECG), and eye-tracking information. A fear conditioning paradigm was adopted to develop a defense response classification model. From a classification model based on 42 feature sets, a higher order crossing feature set-based model was chosen for further analysis with cross-validation loss of 0.0462 (SEM: 0.0077). To validate our model, we compared predicted defense response occurrence ratios from a comprehensive situation that generates defense responses by watching movie clips with fear awareness and threat existence predictability, which have been reported to correlate with defense response elicitation in previous studies. We observed that defense response occurrence ratios are correlated with threat existence predictability, but not with fear awareness. These results are similar to those of previous studies using comprehensive situations. Our study provides insight into measurement of temporal defense responses via a novel approach, which can improve understanding of anxiety and related clinical disorders for neurobiological and clinical researchers.


2021 ◽  
Author(s):  
Xin Sui ◽  
Wanjing Wang ◽  
Jinfeng Zhang

In this work, we trained an ensemble model for predicting drug-protein interactions within a sentence based on only its semantics. Our ensembled model was built using three separate models: 1) a classification model using a fine-tuned BERT model; 2) a fine-tuned sentence BERT model that embeds every sentence into a vector; and 3) another classification model using a fine-tuned T5 model. In all models, we further improved performance using data augmentation. For model 2, we predicted the label of a sentence using k-nearest neighbors with its embedded vector. We also explored ways to ensemble these 3 models: a) we used the majority vote method to ensemble these 3 models; and b) based on the HDBSCAN clustering algorithm, we trained another ensemble model using features from all the models to make decisions. Our best model achieved an F-1 score of 0.753 on the BioCreative VII Track 1 test dataset.


Sign in / Sign up

Export Citation Format

Share Document