scholarly journals Rapid Geographical Origin Identification and Quality Assessment of Angelicae Sinensis Radix by FT-NIR Spectroscopy

2021 ◽  
Vol 2021 ◽  
pp. 1-12 ◽  
Author(s):  
Zhen-yu Zhang ◽  
Ying-jun Wang ◽  
Hui Yan ◽  
Xiang-wei Chang ◽  
Gui-sheng Zhou ◽  
...  

Angelicae Sinensis Radix is a widely used traditional Chinese medicine and spice in China. The purpose of this study was to develop a methodology for geographical classification of Angelicae Sinensis Radix and determine the contents of ferulic acid and Z-ligustilide in the samples using near-infrared spectroscopy. A qualitative model was established to identify the geographical origin of Angelicae Sinensis Radix using Fourier transform near-infrared (FT-NIR) spectroscopy. Support vector machine (SVM) algorithms were used for the establishment of a qualitative model. The optimum SVM model had a recognition rate of 100% for the calibration set and 83.72% for the prediction set. In addition, a quantitative model was established to predict the content of ferulic acid and Z-ligustilide using FT-NIR. Partial least squares regression (PLSR) algorithms were used for the establishment of a quantitative model. Synergy interval-PLS (Si-PLS) was used to screen the characteristic spectral interval to obtain the best PLSR model. The coefficient of determination for calibration (R2C) for the best PLSR models established with the optimal spectral preprocessing method and selected important spectral regions for the quantitative determination of ferulic acid and Z-ligustilide was 0.9659 and 0.9611, respectively, while the coefficient of determination for prediction (R2P) was 0.9118 and 0.9206, respectively. The values of the ratio of prediction to deviation (RPD) of the two final optimized PLSR models were greater than 2. The results suggested that NIR spectroscopy combined with SVM and PLSR algorithms could be exploited in the discrimination of Angelicae Sinensis Radix from different geographical locations for quality assurance and monitoring. This study might serve as a reference for quality evaluation of agricultural, pharmaceutical, and food products.

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 885
Author(s):  
Sergio Ghidini ◽  
Luca Maria Chiesa ◽  
Sara Panseri ◽  
Maria Olga Varrà ◽  
Adriana Ianieri ◽  
...  

The present study was designed to investigate whether near infrared (NIR) spectroscopy with minimal sample processing could be a suitable technique to rapidly measure histamine levels in raw and processed tuna fish. Calibration models based on orthogonal partial least square regression (OPLSR) were built to predict histamine in the range 10–1000 mg kg−1 using the 1000–2500 nm NIR spectra of artificially-contaminated fish. The two models were then validated using a new set of naturally contaminated samples in which histamine content was determined by conventional high-performance liquid chromatography (HPLC) analysis. As for calibration results, coefficient of determination (r2) > 0.98, root mean square of estimation (RMSEE) ≤ 5 mg kg−1 and root mean square of cross-validation (RMSECV) ≤ 6 mg kg−1 were achieved. Both models were optimal also in the validation stage, showing r2 values > 0.97, root mean square errors of prediction (RMSEP) ≤ 10 mg kg−1 and relative range error (RER) ≥ 25, with better results showed by the model for processed fish. The promising results achieved suggest NIR spectroscopy as an implemental analytical solution in fish industries and markets to effectively determine histamine amounts.


1998 ◽  
Vol 6 (1) ◽  
pp. 229-234 ◽  
Author(s):  
William R. Windham ◽  
W.H. Morrison

Near infrared (NIR) spectroscopy in the prediction of individual and total fatty acids of bovine M. Longissimus dorsi neck muscles has been studied. Beef neck lean was collected from meat processing establishments using advanced meat recovery systems and hand-deboning. Samples ( n = 302) were analysed to determine fatty acid (FA) composition and scanned from 400 to 2498 nm. Total saturated and unsaturated FA values ranged from 43.2 to 62.0% and 38.3 to 56.2%, respectively. Results of partial least squares (PLS) modeling shown reasonably accurate models were attained for total saturate content [standard error of performance ( SEP = 1.10%); coefficient of determination on the validation set ( r2 = 0.77)], palmitic ( SEP = 0.94%; r2 = 0.69), unsaturate ( SEP = 1.13%; r2 = 0.77), and oleic ( SEP = 0.97; r2 = 0.78). Prediction of other individual saturated and unsaturated FAs was less accurate with an r2 range of 0.10 to 0.53. However, the sum of individual predicted saturated and unsaturated FA was acceptable compared with the reference method ( SEP = 1.10 and 1.12%, respectively). This study shows that NIR can be used to predict accurately total fatty acids in M. Longissimus dorsi muscle.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Hui Chen ◽  
Zan Lin ◽  
Chao Tan

Near-infrared (NIR) spectroscopy technique offers many potential advantages as tool for biomedical analysis since it enables the subtle biochemical signatures related to pathology to be detected and extracted. In conjunction with advanced chemometrics, NIR spectroscopy opens the possibility of their use in cancer diagnosis. The study focuses on the application of near-infrared (NIR) spectroscopy and classification models for discriminating colorectal cancer. A total of 107 surgical specimens and a corresponding NIR diffuse reflection spectral dataset were prepared. Three preprocessing methods were attempted and least-squares support vector machine (LS-SVM) was used to build a classification model. The hybrid preprocessing of first derivative and principal component analysis (PCA) resulted in the best LS-SVM model with the sensitivity and specificity of 0.96 and 0.96 for the training and 0.94 and 0.96 for test sets, respectively. The similarity performance on both subsets indicated that overfitting did not occur, assuring the robustness and reliability of the developed LS-SVM model. The area of receiver operating characteristic (ROC) curve was 0.99, demonstrating once again the high prediction power of the model. The result confirms the applicability of the combination of NIR spectroscopy, LS-SVM, PCA, and first derivative preprocessing for cancer diagnosis.


Author(s):  
Nawaf Abu-Khalaf ◽  
Mazen Salman

Early detection of plant disease requires usually elaborating methods techniques and especially when symptoms are not visible. Olive Leaf Spot (OLS) infecting upper surface of olive leaves has a long latent infection period. In this work, VIS/NIR spectroscopy was used to determine the latent infection and severity of the pathogens. Two different classification methods were used, Partial Least Squared-Discrimination Analysis (PLS-DA) (linear method) and Support Vector Machine (SVM) (non-linear). SVM-classification was able to classify severity levels 0, 1, 2, 3, 4, and 5 with classification rates of 94, 90, 73, 79, 83 and 100%, respectively The overall classification rate was about 86%. PLS-DA was able to classify two different severity groups (first group with severity 0, 1, 2, 3, and second group with severity 4, 5), with a classification rate greater than 95%. The results promote further researches, and the possibility of evaluation OLS in-situ using portable VIS/NIR devices.


Author(s):  
Nawaf Abu-Khalaf ◽  
Mazen Salman

Early detection of plant disease requires usually elaborating methods techniques and especially when symptoms are not visible. Olive Leaf Spot (OLS) infecting upper surface of olive leaves has a long latent infection period. In this work, VIS/NIR spectroscopy was used to determine the latent infection and severity of the pathogens. Two different classification methods were used, Partial Least Squared-Discrimination Analysis (PLS-DA) (linear method) and Support Vector Machine (SVM) (non-linear). SVM-classification was able to classify severity levels 0, 1, 2, 3, 4, and 5 with classification rates of 94, 90, 73, 79, 83 and 100%, respectively The overall classification rate was about 86%. PLS-DA was able to classify two different severity groups (first group with severity 0, 1, 2, 3, and second group with severity 4, 5), with a classification rate greater than 95%. The results promote further researches, and the possibility of evaluation OLS in-situ using portable VIS/NIR devices.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Sylvio Barbon ◽  
Ana Paula Ayub da Costa Barbon ◽  
Rafael Gomes Mantovani ◽  
Douglas Fernandes Barbin

Identification of chicken quality parameters is often inconsistent, time-consuming, and laborious. Near-infrared (NIR) spectroscopy has been used as a powerful tool for food quality assessment. However, the near-infrared (NIR) spectra comprise a large number of redundant information. Determining wavelengths relevance and selecting subsets for classification and prediction models are mandatory for the development of multispectral systems. A combination of both attribute and wavelength selection for NIR spectral information of chicken meat samples was investigated. Decision Trees and Decision Table predictors exploit these optimal wavelengths for classification tasks according to different quality grades of poultry meat. The proposed methodology was conducted with a support vector machine algorithm (SVM) to compare the precision of the proposed model. Experiments were performed on NIR spectral information (1050 wavelengths), colour (CIEL∗a∗b∗, chroma, and hue), water holding capacity (WHC), and pH of each sample analyzed. Results show that the best method was the REPTree based on 12 wavelengths, allowing for classification of poultry samples according to quality grades with 77.2% precision. The selected wavelengths could lead to potential simple multispectral acquisition devices.


2005 ◽  
Vol 13 (2) ◽  
pp. 69-75 ◽  
Author(s):  
Roland Welle ◽  
Willi Greten ◽  
Thomas Müller ◽  
Gary Weber ◽  
Hartwig Wehrmann

Improving maize ( Zea mays L.) grain yield and agronomic properties are major goals for corn breeders in northern Europe. In order to facilitate field grain yield determination we measured corn grain moisture content with near infrared (NIR) spectroscopy directly on a harvesting machine. NIR spectroscopy, in combination with harvesting, significantly improved quality and speed of yield determination within the very narrow harvest time window. Moisture calibrations were developed with 2117 samples from the 2001 to 2003 crop seasons using six diode array spectrometers mounted on combines. These models were derived from databases containing spectra from all instruments. Spectrometer-specific calibrations cannot be used to predict samples measured on other instruments of the same type. Standard error of cross-validation ( SECV) and coefficient of determination ( R2) were 0.56 and 0.99%, respectively. Moisture standard errors of prediction ( SEPs) for the six instruments, using varying independent sample sets from the 2004 harvest, ranged between 0.59% and 0.99% with R2 values between 0.92 to 0.98. The six instruments produced the same dry matter predictions on a common sample set as indicated by high R2 and low biases among them, hence there was no need to apply specific standardisation algorithms. Moisture NIR spectroscopy determinations were significantly more precise than those obtained using the reference method. Analysis of variance revealed low least significant differences and high heritabilities. High precision and heritability demonstrate successful implementation of on-combine NIR spectroscopy for routine dry matter (yield) measurements.


2020 ◽  
Vol 28 (4) ◽  
pp. 224-235
Author(s):  
Irina M Benson ◽  
Beverly K Barnett ◽  
Thomas E Helser

Applications of Fourier transform near infrared (FT-NIR) spectroscopy in fisheries science are currently limited. This current analysis of otolith spectral data demonstrate the potential applicability of FT-NIR spectroscopy to otolith chemistry and spatial variability in fisheries science. The objective of this study was to examine the use of NIR spectroscopy as a tool to differentiate among marine fishes in four large marine ecosystems. We examined otoliths from 13 different species, with three of these species coming from different regions. Principal component analysis described the main directions along which the specimens were separated. The separation of species and their ecosystems may suggest interactions between fish phylogeny, ontogeny, and environmental conditions that can be evaluated using NIR spectroscopy. In order to discriminate spectra across ecosystems and species, four supervised classification model techniques were utilized: soft independent modelling of class analogies, support vector machine discriminant analysis, partial least squares discriminant analysis, and k-nearest neighbor analysis (KNN). This study showed that the best performing model to classify combined ecosystems, all four ecosystems, and species was the KNN model, which had an overall accuracy rate of 99.9%, 97.6%, and 91.5%, respectively. Results from this study suggest that further investigations are needed to determine applications of NIR spectroscopy to otolith chemistry and spatial variability.


2012 ◽  
Vol 236-237 ◽  
pp. 83-88 ◽  
Author(s):  
Wei Qiang Luo ◽  
Hai Qing Yang ◽  
Wei Cheng Dai

Ultra-violet, visible and near infrared (UV-VIS-NIR) spectroscopy combined with chemometrics was investigated for fast determination of soluble solids content (SSC) of tea beverage. In this study, a total of 120 tea samples with SSC range of 4.0-9.5 ºBrix were tested. Samples were randomly divided for calibration (n=90) and independent validation (n=30). Spectra were collected by a mobile fiber-type UV-VIS-NIR spectrophotometer in transmission mode with recorded wavelength range of 203.64-1128.05 nm. Various calibration approaches, i.e., principal components analysis (PCA), partial least squares (PLS) regression, least squares support vector machine (LSSVM) and back propagation artificial neural network (BPANN), were investigated. The combinations of PCA-BPANN, PCA-LSSVM, PLS-BPANN and PLS-LSSVM were also investigated to build calibration models. Validation results indicated that all these investigated models achieved high prediction accuracy. Especially, PLS-LSSVM achieved best performance with mean coefficient of determination (R2) of 0.99, root-mean-square error of prediction (RMSEP) of 0.12 and residual prediction deviation (RPD) of 15.16. This experiment suggests that it is feasible to measure SSC of tea beverage using UV-VIS-NIR spectroscopy coupled with appropriate multivariate calibration, which may allow using the proposed method for off-line and on-line quality supervision in the production of soft drink.


2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Lu Xu ◽  
Qiong Shi ◽  
Bang-Cheng Tang ◽  
Shunping Xie

A rapid indicator of mercury in soil using a plant (Artemisia lavandulaefolia DC., ALDC) commonly distributed in mercury mining area was established by fusion of Fourier-transform near-infrared (FT-NIR) spectroscopy coupled with least squares support vector machine (LS-SVM). The representative samples of ALDC (stem and leaf) were gathered from the surrounding and distant areas of the mercury mines. As a reference method, the total mercury contents in soil and ALDC samples were determined by a direct mercury analyzer incorporating high-temperature decomposition, catalytic adsorption for impurity removal, amalgamation capture, and atomic absorption spectrometry (AAS). Based on the FT-NIR data of ALDC samples, LS-SVM models were established to distinguish mercury-contaminated and ordinary soil. The results of reference analysis showed that the mercury level of the areas surrounding mercury mines (0–3 kilometers, 7.52–88.59 mg/kg) was significantly higher than that of the areas distant from mercury mines (>5 kilometers, 0–0.75 mg/kg). The LS-SVM classification model of ALDC samples was established based on the original spectra, smoothed spectra, second-derivative (D2) spectra, and standard normal transformation (SNV) spectra, respectively. The prediction accuracy of D2-LS-SVM was the highest (0.950). FT-NIR combined with LS-SVM modeling can quickly and accurately identify the contaminated ALDC. Compared with traditional methods which rely on naked eye observation of plants, this method is objective and more sensitive and applicable.


Sign in / Sign up

Export Citation Format

Share Document