OIL GEOCHEMISTRY AND POTENTIAL SOURCE ROCKS OF THE OFFICER BASIN, SOUTH AUSTRALIA

1980 ◽  
Vol 20 (1) ◽  
pp. 68 ◽  
Author(s):  
D.M. McKirdy ◽  
A.J. Kantsler

Oil shows observed in Cambrian Observatory Hill Beds, intersected during recent stratigraphic drilling of SADME Byilkaoora-1 in the Officer Basin, indicate that oil has been generated within the basin. Shows vary in character from "light" oils exuding from fractures through to heavy viscous bitumen in vugs in carbonate rocks of a playa-lake sequence.The oils are immature and belong to two primary genetic families with some oils severely biodegraded. The less altered oils are rich in the C13 - C25 and C30 acyclic isoprenoid alkanes. Source beds within the evaporitic sequence contain 0.5 - 1.0% total organic carbon and yield up to 1900 ppm solvent-extractable organic matter. Oil-source rock correlations indicate that the oils originated within those facies drilled; this represents the first reported examples of non-marine Cambrian petroleum. The main precursor organisms were benthonic algae and various bacteria.Studies of organic matter in Cambrian strata from five other stratigraphic wells in the basin reveal regional variations in hydrocarbon source potential that relate to differences in precursor microbiota and/or depositional environment and regional maturation. Micritic carbonates of marine sabkha origin, located along the southeast margin of the basin, are rated as marginally mature to mature and good to prolific sources of oil. Further north and adjacent to the Musgrave Block, Cambrian siltstones and shales have low organic carbon values and hydrocarbon yields, and at best are only marginally mature. Varieties of organic matter recognised during petrographic studies of carbonates in the Officer Basin include lamellar alginite (alginite B) and "balls" of bitumen with reflectance in the range 0.2 to 1.4%.

2021 ◽  
Vol 18 (2) ◽  
pp. 398-415
Author(s):  
He Bi ◽  
Peng Li ◽  
Yun Jiang ◽  
Jing-Jing Fan ◽  
Xiao-Yue Chen

AbstractThis study considers the Upper Cretaceous Qingshankou Formation, Yaojia Formation, and the first member of the Nenjiang Formation in the Western Slope of the northern Songliao Basin. Dark mudstone with high abundances of organic matter of Gulong and Qijia sags are considered to be significant source rocks in the study area. To evaluate their development characteristics, differences and effectiveness, geochemical parameters are analyzed. One-dimensional basin modeling and hydrocarbon evolution are also applied to discuss the effectiveness of source rocks. Through the biomarker characteristics, the source–source, oil–oil, and oil–source correlations are assessed and the sources of crude oils in different rock units are determined. Based on the results, Gulong and Qijia source rocks have different organic matter primarily detrived from mixed sources and plankton, respectively. Gulong source rock has higher thermal evolution degree than Qijia source rock. The biomarker parameters of the source rocks are compared with 31 crude oil samples. The studied crude oils can be divided into two groups. The oil–source correlations show that group I oils from Qing II–III, Yao I, and Yao II–III members were probably derived from Gulong source rock and that only group II oils from Nen I member were derived from Qijia source rock.


1980 ◽  
Vol 20 (1) ◽  
pp. 209 ◽  
Author(s):  
G.M. Pitt ◽  
M.C. Benbow ◽  
Bridget C. Youngs

The Officer Basin of South and Western Australia, in its broadest definition, contains a sequence of Late Proterozoic to pre-Permian strata with an unknown number of stratigraphic breaks. Recent investigations by the South Australian Department of Mines and Energy (SADME), which included helicopter-based geological surveys and stratigraphic drilling, have upgraded the petroleum potential of the basin.SADME Byilkaoora-1, drilled in the northeastern Officer Basin in 1979, contained hydrocarbon shows in the form of oil exuding from partly sealed vugs and fractures in argillaceous carbonates. Equivalent carbonates were intersected in SADME Marla-1A and 1B. Previously, in 1976, SADME Murnaroo-1 encountered shales and carbonates with moderate organic carbon content overlying a thick potential reservoir sandstone, while SADME Wilkinson-1, drilled in 1978, contained a carbonate sequence with marginally mature to mature oil-prone source rocks. Acritarchs extracted from the last mentioned carbonates indicate an Early Cambrian age.All ?Cambrian carbonate sequences recognised to date in the Officer Basin of South Australia are correlated with the Observatory Hill Beds, which are now considered to be the major potential source of petroleum in the eastern Officer Basin.


1991 ◽  
Vol 31 (1) ◽  
pp. 177 ◽  
Author(s):  
D. I. Gravestock ◽  
J.E. Hibburt

The Early Cambrian eastern Officer and Arrowie Basins share a common sequence stratigraphic framework despite their contrasting settings. The Arrowie Basin was initially a shallow marine shelf between two land masses with moderate to abrupt shelf-ramp and shelf-slope profiles deepening to the north and south. Tectonic activity subsequently restricted open marine access to the north resulting in evaporite and red bed deposition. In the eastern Officer Basin epeiric sea sediments had open marine access only to the northeast. The palaeoslope was low and surrounding land supplied abundant siliciclastics. Following marine withdrawal alkaline playa lake and evaporitic mudflat deposits spread across the hinterland. Potential source rocks in the Arrowie Basin are thick transgressive and early high-stand deposits of the lowest three sequences. Organic carbon content may be highest (on slender evidence) where marine circulation was restricted. Carbonate reservoir quality on the shelf depends on subaerial exposure during marine lowstands. Prograding highstand sands, carbonate grainstones, and syntectonic channel deposits have untested reservoir potential. In the eastern Officer Basin potential source rocks are thin but widespread. Oil has been generated in the playa lake sediments. Fluvial, aeolian and shoreline sandstones, and those interbedded with carbonates, have excellent reservoir characteristics. The interbedded sands are thin but may be grouped near sequence boundaries. Lowstand carbonate breccias have generally unpredictable reservoir quality. Major differences in source and reservoir bed distribution between these basins, which share the same cycles of relative sea level change, are: palaeoslope, proximity to open marine conditions, duration of subaerial exposure and availability of terrigenous clastics.


2013 ◽  
Vol 10 (2) ◽  
pp. 1131-1141 ◽  
Author(s):  
K. A. Koho ◽  
K. G. J. Nierop ◽  
L. Moodley ◽  
J. J. Middelburg ◽  
L. Pozzato ◽  
...  

Abstract. Burial of organic matter (OM) plays an important role in marine sediments, linking the short-term, biological carbon cycle with the long-term, geological subsurface cycle. It is well established that low-oxygen conditions promote organic carbon burial in marine sediments. However, the mechanism remains enigmatic. Here we report biochemical quality, microbial degradability, OM preservation and accumulation along an oxygen gradient in the Indian Ocean. Our results show that more OM, with biochemically higher quality, accumulates under low oxygen conditions. Nevertheless, microbial degradability does not correlate with the biochemical quality of OM. This decoupling of OM biochemical quality and microbial degradability, or bioavailability, violates the ruling paradigm that higher quality implies higher microbial processing. The inhibition of bacterial OM remineralisation may play an important role in the burial of organic matter in marine sediments and formation of oil source rocks.


2021 ◽  
Author(s):  
◽  
Enock Rotich

<p>The Re-Os radiogenic isotope system has over the past three decades been successfully applied to organic-rich sedimentary rocks and oils as a geochronometer and geochemical tracer. The Re-Os geochronometer has provided a direct way of constraining the depositional age of organic-rich sediments as well as the timing of oil generation events. Osmium isotopic compositions have further been utilised in understanding past climatic, oceanographic and geological events recorded in sediments, and in correlating oils to their source. Thus far, however, Re-Os studies of organic-rich sediments have mainly focused on marine black shales where Re and Os are primarily sourced from seawater. The work presented in this thesis seeks to investigate factors controlling Re-Os systematics and potential for geochronology in a range of fluvio-deltaic coaly rocks and terrestrial organic matter-dominated marine sediments, and associated oils from New Zealand’s Taranaki and East Coast basins. The Re-Os data presented here yield the first radiometric age for the late Paleocene Waipawa Formation (57.5 ± 3.5 Ma), a marine sedimentary unit that was formed by episodic input of large amounts of terrestrial woody plant matter resulting in high average sedimentation rates of up to ~10.6 cm/ky. This age is consistent with available biostratigraphic age determinations. The formation possesses Re (38.9 ± 17.6 ppb) and Os (526 ± 75.8 ppt) concentrations similar to those found in typical marine sediments containing amorphous organic matter deposited under much lower sedimentation rates. This indicates that organic matter type and sedimentation rate may not play a significant role in sequestration of these elements in organic-rich sediments. Unlike the Waipawa Formation, coals and coaly mudstones with varying degrees of marine influence (purely terrestrial to strongly marine-influenced) from the Rakopi, North Cape, Farewell and Mangahewa formations record low average Re (0.37 ± 0.25 ppb) and Os (24.5 ± 11.9 ppt) concentrations. These concentrations are up to two orders of magnitude lower than those of similarly marine-influenced coals from the Matewan coalbed, USA, suggesting that Re and Os enrichment in coals does not simply correlate with the level of marine influence; the timing and nature of the marine influence, as well as chelation ability of organic-rich sediments, are equally important. The initial 187Os/188Os (Osi) values for the Waipawa (~0.28) and underlying Whangai (~0.36) formations are broadly similar to those reported for coeval pelagic sediments from the central Pacific Ocean, further constraining the low-resolution marine 187Os/188Os record of the Paleocene. A broad correlation between this record and global temperature (δ18O and TEX86) and carbon isotope (δ13C) records is observed from the middle Paleocene to early Eocene, which is inferred to reflect climate-modulated changes in continental weathering patterns. Unlike the marine sediments, significant variations are noted in the Osi of the Taranaki Basin coaly rocks. These are linked to depositional and diagenetic conditions, degree of water connectivity with the open ocean, and sediment source. The large variations in Osi values combined with small ranges in 187Re/188Os ratios and relatively young ages are considered as factors that hindered development of Re-Os isochrons in these rocks. Crude oils sourced from the Taranaki coals and coaly mudstones also record low average Re (0.31 ± 0.09 ppb) and Os (14 ± 7.6 ppt) concentrations and have 187Re/188Os and 187Os/188Os ratios that do not correlate on an isochron diagram. The lack of an isochron fit for these oils is mainly attributed to a large variation in Osi values (0.47-1.14) resulting from the heterogeneous nature of their potential Rakopi and North Cape coaly source rocks and a lengthy (20 Myr) oil generation event. These Osi values, however, overlap with 187Os/188Os values for the potential source rocks at the time (ca.10 Ma) of oil generation (0.38-1.26), suggesting that Os isotopes may be utilised in tracing these oils. Crude oils that have potentially been sourced from the Waipawa and Whangai formations record much higher Re (2.86 ± 1.92 ppb) and Os (166 ± 142 ppt) concentrations than the coaly-sourced oils, and show Os isotopic compositions that either correlate with those of their potential source rocks (e.g., oil Osi = ~0.63 compared with Waipawa Formation 187Os/188Os = 0.48–0.68 at time of oil generation) or differ due to likely secondary alteration processes within the reservoir such as thermochemical sulfate reduction (TSR).</p>


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 909
Author(s):  
Xiong Cheng ◽  
Dujie Hou ◽  
Xinhuai Zhou ◽  
Jinshui Liu ◽  
Hui Diao ◽  
...  

Eocene coal-bearing source rocks of the Pinghu Formation from the W-3 well in the western margin of the Xihu Sag, East China Sea Shelf Basin were analyzed using Rock-Eval pyrolysis and gas chromatography–mass spectrometry to investigate the samples’ source of organic matter, depositional environment, thermal maturity, and hydrocarbon generative potential. The distribution patterns of n-alkanes, isoprenoids and steranes, high Pr/Ph ratios, abundant diterpanes, and the presence of non-hopanoid triterpanes indicate predominant source input from higher land plants. The contribution of aquatic organic matter was occasionally slightly elevated probably due to a raised water table. High hopane/sterane ratios and the occurrence of bicyclic sesquiterpanes and A-ring degraded triterpanes suggest microbial activity and the input of microbial organisms. Overwhelming predominance of gymnosperm-derived diterpanes over angiosperm-derived triterpanes suggest a domination of gymnosperms over angiosperms in local palaeovegetation during the period of deposition. The high Pr/Ph ratios, the plot of Pr/n-C17 versus Ph/n-C18, the almost complete absence of gammacerane, and the distribution pattern of hopanes suggest that the samples were deposited in a relatively oxic environment. Generally, fluctuation of redox potential is coupled with source input, i.e., less oxic conditions were associated with more aquatic organic matter, suggesting an occasionally raised water table. Comprehensive maturity evaluation based on Ro, Tmax, and biomarker parameters shows that the samples constitute a natural maturation profile ranging from marginally mature to a near peak oil window. Hydrogen index and atomic H/C and O/C ratios of kerogens suggest that the samples mainly contain type II/III organic matter and could generate mixed oil and gas.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jian Fu ◽  
Xuesong Li ◽  
Yonghe Sun ◽  
Qiuli Huo ◽  
Ting Gao ◽  
...  

In the evaluation of source rocks, the total organic carbon (TOC) is an important indicator to evaluate the hydrocarbon generation potential of source rocks. At present, the commonly used methods for assessing TOC include △ log R and neural network method. However, practice shows that these methods have limitations in the application of unconventional intervals of sand-shale interbeds, and they cannot sufficiently reflect the variation of TOC in the vertical direction. Therefore, a total organic carbon (TOC) evaluation model suitable for shale and tight sandstone was established based on the effective medium symmetrical conduction theory. The model consists of four components: nonconductive matrix particles, clay minerals, organic components (solid organic matter and hydrocarbons), and pore water. The conductive phase in the model includes clay minerals and pore water, and other components are treated as nonconductive phases. When describing the conductivity of rock, each component in the model is completely symmetrical, and anisotropic characteristics of each component are considered. The model parameters are determined through the optimization method, and the bisection iteration method is used to solve the model equation. Compared with the classic TOC calculation method, the new model can evaluate the abundance of organic matter in shale and tight sandstone, which provides a new option to assess the TOC of rocks based on logging methods.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4778 ◽  
Author(s):  
Wentong He ◽  
Youhong Sun ◽  
Wei Guo ◽  
Xuanlong Shan ◽  
Siyuan Su ◽  
...  

The Cretaceous Era has always been a focus of geologic and palaeoenvironmental studies. Previous researchers believed that the impact of the global carbon cycle represents significant short-term global biogeochemical fluctuations, leading to the formation of a large number of organic rich sediments in the marine environment. During the Turonian, a large number of organic-rich oil shales were deposited in the lakes of the Songliao Basin in the Qingshankou Formation. How the depositional environment affected the formation of oil shales in continental lakes and the characteristics of these oil shales remain controversial. In this paper, through sampling of Qingshankou Formation strata, various testing methods are used to provide a variety of new data to study the characteristics of oil shales and palaeoenvironment evolution history in the Songliao Basin. The research of the sediments in the Qingshankou Formation in the Fuyu oilfield, Songliao Basin, via result analysis revealed that the oil shales possess an excellent oil-generation potential with moderate-high total organic carbon (TOC) levels (0.58–9.43%), high hydrogen index (HI) values (265–959 mg hydrocarbons (HC)/g TOC), high extractable organic matter (EOM) levels (2.50–6.96 mg/g TOC) and high hydrocarbon fractions (48–89%). The sources of the organic matter were mainly zooplankton, red algae and higher plants (including marine organisms). The aqueous palaeoenvironment of the Qingshankou Formation was a saline water environment with a high sulfate concentration, which promoted an increase in nutrients and stratification of the water density in the lake basin. Oxygen consumption in the bottom water layer promoted the accumulation and burial of high-abundance organic matter, thus forming the high-quality oil shales in the Qingshankou Formation. The global carbon cycle, warm-humid palaeoclimate, dynamic local biogeochemical cycling and relative passive tectonism were the most likely reasons for the TOC increase and negative δ13Corg deviation.


Sign in / Sign up

Export Citation Format

Share Document