scholarly journals Effect of Alloying Composition on Microstructure and Mechanical Properties of Ultranarrow Gap Welded Joints of U71Mn Rail Steel

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Lian Gong ◽  
Hui Liu ◽  
Cheng Lv ◽  
Lijun Zhao

A new welding method, ultranarrow gap welding with constrained arc by flux band, is proposed to compensate for the low quality of rail thermite welded joints. This article presents the results of research on the microstructure and mechanical properties of ultranarrow gap welded joints of U71Mn rail steel made using three types of alloying composition content flux bands. Results indicated that the base metal metallographic microstructure consisted mainly of pearlitic, the HAZ was mainly composed of fine pearlite, and the microstructure of the welded bead was composed of acicular ferrite, while the weld grain size decreased as the alloy composition increased. The average hardness noticeably changed in weld metal as the alloy composition increased, and when the alloy composition reached 19%, the hardness was equivalent to the base material. The average hardness value of the HAZ (35.8 HRC) was higher than that of the base metal (24.8 HRC). The tensile strength increased, and the percentage elongation after fracture decreased with increasing alloying composition from 9% to 19%. The impact absorbing energies were decreased as the alloying composition increased. Consequently, all the mechanical properties of rail ultranarrow gap welding were higher than those of the standard requirements of the rail flash welding. And the optimal alloying composition of flux band was 19%.

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3430
Author(s):  
Grzegorz Golański ◽  
Jacek Słania ◽  
Marek Sroka ◽  
Paweł Wieczorek ◽  
Michał Urzynicok ◽  
...  

In addition to good high-temperature creep resistance and adequate heat resistance, steels for the power industry must have, among other things, good weldability. Weldability of such steels is one of the criteria determining whether or not the material is suitable for applications in the power industry. Therefore, when materials such as martensitic steel Thor 115 (T115) are introduced into the modern power industry, the quality and properties of welded joints must be assessed. The paper presents the results of metallographic and mechanical investigations of T115 martensitic steel welded joints. The analysis was carried out on joints welded with two filler metals: WCrMo91 (No. 1) and EPRI P87 (No. 2). The scope of the investigations included: microstructural investigations carried out using optical, scanning and transmission electron microscopy and mechanical testing, i.e., Vickers microhardness and hardness measurement, static tensile test and impact test. The macro- and microstructural investigations revealed correct structure of the weld, without welding imperfections. The microstructural investigations of joint No. 1 revealed a typical structure of this type of joint, i.e., the martensitic structure with numerous precipitates, while in joint No. 2, the so-called Nernst’s layers and δ-ferrite patches were observed in the weld fusion zone as well as the heat affected zone (HAZ). The mechanical properties of the test joints met the requirements for the base material. A slight influence of the δ-ferrite patch on the strength properties of joint No. 2 was observed, and its negative effect on the impact energy of HAZ was visible.


2011 ◽  
Vol 255-260 ◽  
pp. 132-136
Author(s):  
Hong Yu Qi ◽  
Jian Xie ◽  
Dong Pan ◽  
Shao Lin Li ◽  
Xiao Guang Yang

Forged Ti-6Al-4V welded structure by electronic beam welding (EBW) as integrally bladed disk (blisk) structure in advanced aero-engine has been widely applied. It is necessary to analyze microstructure and mechanical properties of Ti-6Al-4V welded joints by EBW for failure analysis and structure design of blisk. Firstly the microstructure and mechanical properties of forged Ti-6Al-4V welded joints was focused on. Grains in the weld zone become coarse and large gradient organization structure appears in the heat affected zone (HAZ), which presents significant local heterogeneity. Microhardness of the weld zone is about 20% higher than that of the base metal. The size of different region of the welded joints was estimated. Then static tensile test of three different specimens were carried on. Experiment results show that the tensile and yield strength of welded joints are not less than that of the base metal. Finally the empirical relationship between strength and hardness of Ti-6Al-4V alloy is established. Tensile strength of the weld zone and the base metal were estimated. Compared to experiment data, the deviation is 3.56%, 0.097% respectively.


2017 ◽  
Vol 62 (2) ◽  
pp. 627-634 ◽  
Author(s):  
S. Błacha ◽  
M.S. Węglowski ◽  
S. Dymek ◽  
M. Kopyściański

Abstract The paper shows the results of metallographic examination and mechanical properties of electron beam welded joints of quenched and tempered S960QL and Weldox 1300 steel grades. The aim of this study was to examine the feasibility of producing good quality electron beam welded joints without filler material. Metallographic examination revealed that the concentrated electron beam significantly affects the changes of microstructure in the weld and the adjacent heat affected zone (HAZ) in both steel grades. The microstructure of the welded joints is not homogeneous. The four zones, depending on the distance from the weld face, can be distinguished. Basically, the microstructure of the weld consists of a mixture of martensite and bainite. However, the microstructure of HAZ depends on the distance from the fusion line. It is composed of martensite near the fusion line and a mixture of bainite and ferrite in the vicinity of the base material. Significant differences in mechanical properties of the welded joints were observed. For a butt welded joint of the S960QL steel grade the strength is at the level of the strength of the base material (Rm = 1074 MPa). During the bending test the required angle of 180° was achieved. The impact strength at −40°C was 71,7 J/cm2. In the case of the Weldox 1300 steel grade butt welded joints exhibit high mechanical properties (Rm = 1470 MPa), however, the plastic properties are on the lower level than for the base material.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 773
Author(s):  
Y.H. Guo ◽  
Li Lin ◽  
Donghui Zhang ◽  
Lili Liu ◽  
M.K. Lei

Heat-affected zone (HAZ) of welding joints critical to the equipment safety service are commonly repeatedly welded in industries. Thus, the effects of repeated welding up to six times on the microstructure and mechanical properties of HAZ for AISI 304N austenitic stainless steel specimens were investigated by a Gleeble simulator. The temperature field of HAZ was measured by in situ thermocouples. The as-welded and one to five times repeated welding were assigned as-welded (AW) and repeated welding 1–5 times (RW1–RW5), respectively. The austenitic matrices with the δ-ferrite were observed in all specimens by the metallography. The δ-ferrite content was also determined using magnetic and metallography methods. The δ-ferrite had a lathy structure with a content of 0.69–3.13 vol.%. The austenitic grains were equiaxial with an average size of 41.4–47.3 μm. The ultimate tensile strength (UTS) and yield strength (YS) mainly depended on the δ-ferrite content; otherwise, the impact energy mainly depended on both the austenitic grain size and the δ-ferrite content. The UTS of the RW1–RW3 specimens was above 550 MPa following the American Society of Mechanical Engineers (ASME) standard. The impact energy of all specimens was higher than that in ASME standard at about 56 J. The repeated welding up to three times could still meet the requirements for strength and toughness of welding specifications.


2016 ◽  
Vol 35 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Zhiyuan Liang ◽  
Wanhua Sha ◽  
Qinxin Zhao ◽  
Chongbin Wang ◽  
Jianyong Wang ◽  
...  

AbstractThe effect of aging heat treatment on the microstructure and mechanical properties of 10Cr20Ni25Mo1.5NbN austenitic steel was investigated in this article. The microstructure was characterized by scanning electron microscopy, energy dispersive spectrometry and transmission electron microscopy. Results show that the microstructure of 10Cr20Ni25Mo1.5NbN austenitic is composed of austenite. This steel was strengthened by precipitates of secondary phases that were mainly M23C6 carbides and NbCrN nitrides. As aging treatment time increased, the tensile strength first rose (0–3,000 h) and then fell (3,000–5,000 h) due to the decrease of high density of dislocations. The impact absorbed energy decreased sharply, causing the sulfides to precipitate at the grain boundary. Therefore, the content of sulfur should be strictly controlled in the steelmaking process.


2019 ◽  
Vol 38 (2019) ◽  
pp. 404-410 ◽  
Author(s):  
Weijuan Li ◽  
Haijian Xu ◽  
Xiaochun Sha ◽  
Jingsong Meng ◽  
Zhaodong Wang

AbstractIn this study, oxide dispersion strengthened (ODS) ferritic steels with nominal composition of Fe–14Cr–2W–0.35Y2O3 (14Cr non Zr-ODS) and Fe–14Cr–2W–0.3Zr–0.35Y2O3 (14Cr–Zr-ODS) were fabricated by mechanical alloying (MA) and hot isostatic pressing (HIP) technique to explore the impact of Zr addition on the microstructure and mechanical properties of 14Cr-ODS steels. Microstructure characterization revealed that Zr addition led to the formation of finer oxides, which was identified as Y4Zr3O12, with denser dispersion in the matrix. The ultimate tensile strength (UTS) of the non Zr-ODS steel is about 1201 MPa, but UTS of the Zr-ODS steel increases to1372 MPa, indicating the enhancement of mechanical properties by Zr addition.


Sign in / Sign up

Export Citation Format

Share Document