scholarly journals Conformal Quad-Port UWB MIMO Antenna for Body-Worn Applications

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Thennarasi Govindan ◽  
Sandeep Kumar Palaniswamy ◽  
Malathi Kanagasabai ◽  
Sachin Kumar ◽  
Thipparaju Rama Rao ◽  
...  

A conformal four-port multiple-input-multiple-output (MIMO) antenna operating at 2.4 GHz and ultrawideband (UWB) is presented for wearable applications. The unit element of the MIMO antenna is a simple rectangular monopole with an impedance bandwidth of 8.9 GHz (3.1–12 GHz). In the monopole radiator, stubs are introduced to achieve 2.4 GHz resonance. Also, a defect is introduced in the ground plane to reduce backside radiation. The efficiency of the proposed antenna is greater than 95%, and its peak gain is 3.1 dBi. The MIMO antenna has an isolation of >20 dB, and the estimated specific absorption rate (SAR) values for 1 gm of tissue are below 1.6 W/Kg. The size of the four-port MIMO antenna is 1.38λ0 × 0.08λ0 × 0.014λ0.

2019 ◽  
Vol 16 (10) ◽  
pp. 4242-4248
Author(s):  
Manoj Kapil ◽  
Manish Sharma

In this research article, a compact MIMO (Multiple-Input-Multiple-Output) antenna with inclusion of two notched bands characteristics is presented. Designed MIMO antenna consist of dual radiating patches printed on one surface of the substrate which covers measured wide impedance bandwidth of 2.88 GHz–19.98 GHz and satisfies bandwidth ratio more than 10:1 for superwideband with compact size of 18 mm × 34 mm. Two radiating patch are placed symmetrically for MIMO configuration and notched bands to eliminate WiMAX/C and WLAN bands are obtained by attaching inverted T-shaped stub on radiating patch and etched inverted U-shape slit in microstrip feed. Isolation between the two radiating patch is maintained by adding two L-shaped stub in slotted rectangular ground plane. Measured radiation pattern are stable in operating band and offers maximum 4.23 dBi and 89% gain and radiation efficiency respectively. Moreover, antenna shows good diversity performance with Envelope-Correlation-Coefficient (ECC) < 0.5, Directive-Gain (DG) > 9.95 dB and Total-Active-Reflection Coefficient (TARC) < -30 dB.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1174 ◽  
Author(s):  
Pawan Kumar ◽  
Shabana Urooj ◽  
Areej Malibari

This article presents a compact, planar, quad-port ultra-wideband (UWB) multiple-input–multiple-output (MIMO) antenna with wide axial ratio bandwidth (ARBW). The proposed MIMO design consists of four identical square-shaped antenna elements, where each element is made up of a circular slotted ground plane and feed by a 50 Ω microstrip line. The circular polarization is achieved using a protruding hexagonal stub from the ground plane. The four elements of the MIMO antenna are placed orthogonally to each other to obtain high inter-element isolation. FR-4 dielectric substrate of size 45 × 45 × 1.6 mm3 is used for the antenna prototype, and a good agreement is noticed among the simulated and experimental results. The proposed MIMO antenna shows 3-dB ARBW of 52% (3.8–6.5 GHz) and impedance bandwidth (S11 ≤ −10 dB) of 144% (2.2–13.5 GHz).


Author(s):  
Harleen Kaur ◽  
Hari Shankar Singh ◽  
Rahul Upadhyay

Abstract In this research study, a compact dual-polarized co-radiator ultra-wideband (UWB) multiple-input multiple-output (MIMO) antenna with improved impedance bandwidth and isolation is proposed for wireless applications. The designed co-radiator has an overall area of 0.3λo × 0.3λo mm2 (where, λo is free space wavelength corresponding to the lower cut-off frequency, i.e., 3.1 GHz). The proposed resonator comprises of a hybrid geometry which is created with the combinations of a circular-shaped patch, a square, and two rectangular stubs. It is centrally aligned between two 50 Ω micro-strip feed lines that are positioned orthogonal to each other. Further, the modified ground plane is attached with the end-loaded line which provides broadband isolation over entire UWB frequency band. The simulated results of the proposed antenna exhibit wideband characteristics with impedance bandwidth of 3.1–16.9 GHz with minimum isolation of −15 dB. Moreover, all the radiation performance parameters are analyzed and discussed. Some important diversity parameters such as envelope correlation coefficient, mean effective gain, effective diversity gain, and channel capacity loss have also been evaluated. Furthermore, all the measured results of proposed antenna agree well with the simulated results which make the proposed antenna a suitable candidate for UWB-MIMO wireless applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Pillalamarri Laxman ◽  
Anuj Jain

Stealth wearable wireless devices are gaining much attention in the personal security and fashion designing industry. A multiple-input multiple-output wideband circularly polarized antenna wearable on a dress (textile-related), which is immune to bending, is described in this paper, where a wearable on fabric dress application uses the MIMO techniques. It consists of two multiple-input multiple-output types of antenna elements: the resonating elements are created resembling a beautiful peacock shape and the ground plane is appropriately designed. A voltage is applied to each antenna element; the ground plane contains a microstrip transmission line-fed and a rectangular upside-down L-shaped (vertically flipped) strip used for circular polarizing. The antenna covers a 3 dB axial-ratio-band-width (ARBW) value of 5.20–7.10 GHz and impedance bandwidth (S11 less than −10 dB) of 03.60–13.0 GHz. The proposed attachable wearable fabric (textile) multiple-input multiple-output wideband antenna exhibits envelope correlation coefficient (ECC) <0.02, diversity gain (DG) >9.96, channel capacity loss (CCL) <0.2 b/s/Hz, total active reflective coefficient (TARC) <−10 dB, mean effective gain (MEG) ratio within ±0.5 dB. There is dual-sense circular polarization in this antenna and high isolation between resonating elements (higher than 18). A specific absorption rate (SAR) of the proposed antenna for human tissues specimen is also discussed for different situations related to the human body. The overall size of the proposed CP textile MIMO antenna is 34 : 5 × 42 × 1 mm3. Because of its clothing layers (textile), practical performance, and miniature size, the designed MIMO antenna may be helpful for wearable on cloths on human body wireless devices and systems. The proposed antenna can be made unrecognizable because of the beautiful peacock design that can easily mix with the designs of fabric (in the fashion dress). The simulated antenna was fabricated with the help of conventional manual fabrication techniques and tested in real-time situations. The edge-to-edge distance amid the MIMO radiating antennas is 14.2 mm, and the achieved isolation is greater than 18 dB after optimization of the proposed antenna.


2020 ◽  
Vol 35 (8) ◽  
pp. 887-892
Author(s):  
Li-Yan Chen ◽  
Wei-Si Zhou ◽  
Jing-Song Hong ◽  
Muhammad Amin

A compact eight-port coplanar waveguide (CPW)-fed ultra-wideband (UWB) multiple-input-multiple-output (MIMO) antenna with band-notched characteristics in a small size of 54×54×0.8 mm3 is proposed in this paper. The eight-port MIMO antenna consists of four two-port MIMO antennas. For each two-port MIMO antenna, two monopole antenna elements are printed on the FR4 substrate and placed perpendicularly to each other. To increase impedance bandwidth and improve the isolation, a stub is positioned in the middle of two radiating elements. The band-notched characteristic are achieved by etching two L-shaped resonator slots on each radiating elements, respectively. The S11 reflection coefficients, coupling isolation, radiation patterns, peak gain and radiation efficiencies of the MIMO antenna are measured. The MIMO performance of the proposed antenna is analyzed and evaluated by the envelope correlation coefficient (ECC) and total active reflection coefficient (TARC).


2017 ◽  
Vol 10 (3) ◽  
pp. 360-367 ◽  
Author(s):  
Sonika Priyadarsini Biswal ◽  
Sushrut Das

A compact printed quadrant shaped monopole antenna is introduced in this paper as a good prospect for ultra wideband- multiple-input multiple-output (UWB-MIMO) system. The proposed MIMO antenna comprises two perpendicularly oriented monopoles to employ polarization diversity. An open circuit folded stub is extended from the ground plane of each radiating element to enhance the impedance bandwidth satisfying the UWB criteria. Two ‘L’ shaped slots are further etched on the radiator to provide good isolation performance between two radiators. The desirable radiator performances and diversity performances are ensured by simulation and/or measurement of the reflection coefficient, radiation pattern, realized peak gain, envelope correlation coefficient (ECC), diversity gain, mean effective gain (MEG) ratio and channel capacity loss (CCL). Results indicate that the proposed antenna exhibits 2.9–11 GHz 10 dB return loss bandwidth, mutual coupling <−20 dB, ECC < 0.003, MEG ratio ≈ 1, and CCL < 0.038 Bpsec/Hz, making it a good candidate for UWB and MIMO diversity application.


Author(s):  
M. Saravanan ◽  
R. Kalidoss ◽  
B. Partibane ◽  
K. S. Vishvaksenan

Abstract The design, analysis, fabrication, and testing of a four-port multiple-input multiple-output (MIMO) antenna is reported in this paper for automotive communications. The MIMO antenna is constructed using the basic antenna element exploiting a slot geometry. Two such antennas are developed on the same microwave laminate to develop a two-port MIMO antenna. Two such microwave laminates are interlocked to create the four-port MIMO scheme. The most distinct feature of the proposed architecture is that the inter-port isolation is well-taken care without the need for an external decoupling unit. The four-port MIMO antenna has an overall volume of 32 × 15 × 32 mm3. The prototype MIMO antenna is fabricated and the measurements are carried out to validate the simulation results. The antenna offers ultra-wideband (UWB) characteristics covering the frequency range of 2.8–9.5 GHz. The average boresight gain of the antenna ranges from 3.2 to 5.41 dBi with the peak gain at 8 GHz. The simulated efficiency of the antenna is greater than 73% within the operating bandwidth. The MIMO parameters such as envelope correlation coefficient, diversity gain, and mean effective gain are evaluated and presented. The appropriateness of the proposed antenna for deployment in the shark fin housing of the present-day automobiles is verified using on-car performance estimation.


2019 ◽  
Vol 8 (1) ◽  
pp. 75-81
Author(s):  
N. Al Shalaby ◽  
S. G. El-Sherbiny

In this paper, A multiple input Multiple Output (MIMO) antenna using two Square Dielectric Resonators (SDRs) is introduced. The mutual coupling between the two SDRAs is reduced using two different methods; the first method is based on splitting a spiral slot in the ground plane, then filling the slot with dielectric material, "E.=2.2". The second method is based on inserting a copper parasitic element, having the same shape of the splitted Spiral, between the two SDRAs.  The effect of replacing the copper parasitic element with Carbon nanotubes (CNTs) parasitic element "SOC12 doped long-MWCNT BP" is also studied. The antenna system is designed to operate at 6 GHz. The analysis and simulations are carried out using finite element method (FEM). The defected ground plane method gives a maximum isolation of l8dB at element spacing of 30mm (0.6λo), whereas the parasitic element method gives a maximum isolation of 42.5dB at the same element spacing.


2015 ◽  
Vol 6 (3) ◽  
pp. 1-15 ◽  
Author(s):  
Wan Noor Najwa Wan Marzudi ◽  
Zuhairiah Zainal Abidin ◽  
Siti Zarina Mohd Muji ◽  
Yue Ma ◽  
Raed A. Abd-Alhameed

This paper presented a planar printed multiple-input-multiple-output (MIMO) antenna with a dimension of 100 x 45 mm2. It composed of two crescent shaped radiators placed symmetrically with respect to the ground plane. Neutralization line applied to suppress mutual coupling. The proposed antenna examined both theoretically and experimentally, which achieves an impedance bandwidth of 18.67% (over 2.04-2.46 GHz) with a reflection coefficient < -10 dB and mutual coupling minimization of < -20 dB. An evaluation of MIMO antennas is presented, with analysis of correlation coefficient, total active reflection coefficient (TARC), capacity loss and channel capacity. These characteristics indicate that the proposed antenna suitable for some wireless applications.


2019 ◽  
Vol 57 (2) ◽  
pp. 223
Author(s):  
Hoa Nguyen Thi Quynh ◽  
Sy Tuan Tran ◽  
Huu Lam Phan ◽  
Duy Tung Phan

A compact three-port metamaterial multiple-input-multiple-output (MIMO) antenna using complementary split-ring resonator (CSRR) loaded ground have demonstrated in order to miniaturize the size and improve the antenna performance. The antenna is designed on FR4 material and simulated by HFSS software. By loading CSRRs in the ground plane, the size reduction of 77% of the individual patch antenna element is achieved, which appeared to be the major reason for the obtained the compact MIMO antenna. Furthermore, the simulated results show that the proposed MIMO antenna achieves the total gain higher than 5 dB, the isolation less than -11 dB, the envelope correlation coefficient (ECC) value lower than 0.015, and the bandwidth of 100 MHz through the whole WLAN band from 2.4 GHz to 2.484 GHz, indicating promises for WLAN applications.


Sign in / Sign up

Export Citation Format

Share Document