scholarly journals New Visual Expression of Anime Film Based on Artificial Intelligence and Machine Learning Technology

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yijie Wan ◽  
Mengqi Ren

With the improvement of material living standards, spiritual entertainment has become more and more important. As a more popular spiritual entertainment project, film and television entertainment is gradually receiving attention from people. However, in recent years, the film industry has developed rapidly, and the output of animation movies has also increased year by year. How to quickly and accurately find the user’s favorite movies in the huge amount of animation movie data has become an urgent problem. Based on the above background, the purpose of this article is to study the new visual expression of animation movies based on artificial intelligence and machine learning technology. This article takes the film industry’s informatization and intelligent development and upgrading as the background, uses computer vision and machine learning technology as the basis to explore new methods and new models for realizing film visual expression, and proposes relevant thinking to promote the innovative development of film visual expression from a strategic level. This article takes the Hollywood anime movie “Kung Fu Panda” as a sample and uses convolutional neural algorithms to study its new visual expression. The study found that after the parameters of the model were determined, the accuracy of the test set did not change much, all around 57%. This is of great significance for improving the audiovisual quality and creative standards of film works and promoting the healthy and sustainable development of the film industry.


Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 18
Author(s):  
Pantelis Linardatos ◽  
Vasilis Papastefanopoulos ◽  
Sotiris Kotsiantis

Recent advances in artificial intelligence (AI) have led to its widespread industrial adoption, with machine learning systems demonstrating superhuman performance in a significant number of tasks. However, this surge in performance, has often been achieved through increased model complexity, turning such systems into “black box” approaches and causing uncertainty regarding the way they operate and, ultimately, the way that they come to decisions. This ambiguity has made it problematic for machine learning systems to be adopted in sensitive yet critical domains, where their value could be immense, such as healthcare. As a result, scientific interest in the field of Explainable Artificial Intelligence (XAI), a field that is concerned with the development of new methods that explain and interpret machine learning models, has been tremendously reignited over recent years. This study focuses on machine learning interpretability methods; more specifically, a literature review and taxonomy of these methods are presented, as well as links to their programming implementations, in the hope that this survey would serve as a reference point for both theorists and practitioners.



2020 ◽  
pp. 799-810
Author(s):  
Matthew Nagy ◽  
Nathan Radakovich ◽  
Aziz Nazha

The volume and complexity of scientific and clinical data in oncology have grown markedly over recent years, including but not limited to the realms of electronic health data, radiographic and histologic data, and genomics. This growth holds promise for a deeper understanding of malignancy and, accordingly, more personalized and effective oncologic care. Such goals require, however, the development of new methods to fully make use of the wealth of available data. Improvements in computer processing power and algorithm development have positioned machine learning, a branch of artificial intelligence, to play a prominent role in oncology research and practice. This review provides an overview of the basics of machine learning and highlights current progress and challenges in applying this technology to cancer diagnosis, prognosis, and treatment recommendations, including a discussion of current takeaways for clinicians.



2020 ◽  
Vol 39 (4) ◽  
pp. 5941-5952
Author(s):  
Yang Chunhe

Machine learning technology is the core of artificial intelligence and the basis of computer intelligence. In recent years, machine learning technology has integrated and developed different learning methods, and the research of integrated learning system with more flexible and efficient form is also emerging. In this paper, the authors analyze the maker space index system based on machine learning and intelligent interactive system. As a comprehensive innovation and entrepreneurship platform, mass innovation space has the characteristics of both existing entrepreneurship service system and knowledge innovation driven. Through the index score calculation, the related evaluation system is constructed, the final score of social support system is 61.4.Multi-factor performance evaluation system based on machine learning and artificial intelligence,this paper reveals the development and change law of maker space, and provides theoretical basis for the future operation and decision-making of maker space.



2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jieqiong Zhou ◽  
Zhenhua Wei ◽  
Bin Peng ◽  
Fangchun Chi

Film and television literature recommendation is an AI algorithm that recommends related content according to user preferences and records. The wide application in various APPs and websites provides users with great convenience. This article aims to study the Internet of Things and machine learning technology, combining deep learning, reinforcement learning, and recommendation algorithms, to achieve accurate recommendation of film and television literature. This paper proposes to use the ConvMF-KNN recommendation model to verify and analyze the four models of PMF, ConvM, ConvMF-word2vec, and ConvMF-KNN, respectively, on public datasets. Using the path information between vertices in bipartite graph and considering the degree of vertices, the similarity between items is calculated, and the neighbor item set of items is obtained. The experimental results show that the ConvMF-KNN model combined with the KNN idea effectively improves the recommendation accuracy. Compared with the accuracy of the PMF model on the MovieLens 100 k, MovieLens 1 M, and AIV datasets, the accuracy of the ConvMF model on the above three datasets is 5.26%, 6.31%, and 26.71%, respectively, an increase of 2.26%, 1.22%, and 7.96%. This model is of great significance.



2020 ◽  
Vol 8 (5) ◽  
pp. 2722-2727

Many people adopting Smart Assistant Devices such as Google Home. Now a days of solely engaging with a service through a keyboard are over. The new modes of user interaction are aided in part by this research will investigate how advancements in Artificial Intelligence and Machine Learning technology are being used to improve many services. In particular, it will look at the development of google assistants as a channel for information distribution. This project is aimed to implement an android-based chatbot to assist with Organization basic processes, using google tools such as Dialogflow that uses Natural language processing NLP, Actions on Google and Google Cloud Platform that expose artificial intelligence and Machine Learning methods such as natural language understanding. Allowing users to interact with the google assistant using natural language as input and to train the chatbot i.e. google assistant using Dialogflow Machine learning tool and some appropriate methods so it will be able to generate a dynamic response. The chatbot will allow users to view all their personal academic information, schedule meetings with higher officials, automating the organization process and organization resources information all from within the chatbot i.e. Google Assistant. This project uses the OAuth authentication for security purpose. The Dialogflow helps to understand the users query by using machine learning algorithms. By using this google assistant we are going to use the Cloud Vision API for advancement. We will use Dialogflow as key part to develop Google assistant.



2020 ◽  
Vol 9 (28) ◽  
pp. 123-129 ◽  
Author(s):  
D. Yu. Eliseeva ◽  
A. Yu. Fedosov ◽  
D. V. Agaltsova ◽  
O. L. Mnatsakanyan ◽  
K. K. Kuchmezov

Artificial intelligence, as a separate field of research, is currently experiencing a boom - new methods of machine learning and hardware are emerging and improving, and the results achieved change the life of society. Machine translation, handwriting recognition, speech recognition are changing our reality. The work of creating unmanned vehicles, voice assistants and other devices using these technologies is in an active process. The article examines the historical context of the artificial intelligence development, it evaluates the possibilities of its introduction into cyber games, as a safe and effective platform for testing new methods of machine learning. The promotion of such projects can increase the reputation of development companies, ensure increased user confidence in other products and, with a competent marketing strategy, cause a significant public resonance among video game fans, providing the developer with economic profit.



2020 ◽  
Vol 03 (04) ◽  
pp. 7-13
Author(s):  
Elcin Nizami Huseyn ◽  

Medical imaging technology plays an important role in the detection, diagnosis and treatment of diseases. Due to the instability of human expert experience, machine learning technology is expected to assist researchers and physicians to improve the accuracy of imaging diagnosis and reduce the imbalance of medical resources. This article systematically summarizes some methods of deep learning technology, introduces the application research of deep learning technology in medical imaging, and discusses the limitations of deep learning technology in medical imaging. Key words: Artificial Intelligence, Deep Learning, Medical Imaging, big data



Author(s):  
Thomas P. Trappenberg

The concluding chapter is a brief venture into a more general discussion of machine learning, how it relates to artificial intelligence (AI), and the recent impact of this on society. It starts by discussing the relations of machine learning models in relation to the brain and human intelligence. The discussion then moves to the relation between machine learning and AI. While they are now often equated, it is useful to highlight some possible sources of misconceptions. It closes with some brief thought on the impact of machine learning technology our society.



2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Igor V. Tetko ◽  
Ola Engkvist

Abstract The increasing volume of biomedical data in chemistry and life sciences requires development of new methods and approaches for their analysis. Artificial Intelligence and machine learning, especially neural networks, are increasingly used in the chemical industry, in particular with respect to Big Data. This editorial highlights the main results presented during the special session of the International Conference on Neural Networks organized by “Big Data in Chemistry” project and draws perspectives on the future progress of the field. Graphical Abstract



Sign in / Sign up

Export Citation Format

Share Document