scholarly journals Effect of Expanded Polystyrene Particle Size on Engineering Properties of Clayey Soil

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chuanyang Liang ◽  
Yuedong Wu ◽  
Jian Liu ◽  
Huiguo Wu ◽  
Dashuo Chen ◽  
...  

The particle size of expanded polystyrene (EPS) has an effect on engineering properties of EPS-clay blends. However, the effect of differences between EPS particle size groups subdivided within 1–3 mm on engineering properties is usually ignored. In this study, different particle sizes of EPS pellets have been considered to separately investigate the effect on the optimum water content (OWC), maximum dry density (MDD), unconfined compressive strength (UCS), ductility, coefficient of permeability, and compression index of EPS-clay blends. Results show that the MDD, ductility, hydraulic conductivity, and compression index of EPS-clay blends do not increase with the increase in the EPS particle size in the range of 0.3–3 mm, while the OWC and UCS do not decrease. For a given EPS content, among samples with the EPS particle size of 0.3–1 mm, 1-2 mm, and 2-3 mm, the MDD and UCS of EPS-clay blends with 1-2 mm in EPS particle size are the largest, while the OWC, ductility, coefficient of permeability, and compression index are the smallest. Microstructure analyses reveal that, for samples with the EPS particle size of 1-2 mm, the pore volume is lower and the microstructure is denser, which are the main reasons why the EPS particle size can influence engineering properties of EPS-clay blends.

2021 ◽  
Vol 28 (1) ◽  
pp. 83-95
Author(s):  
Qu Jili ◽  
Wang Junfeng ◽  
Batugin Andrian ◽  
Zhu Hao

Abstract Fine aggregates of construction waste and fly ash were selected as additives to modify the characteristics of Shanghai clayey soil as a composite. The laboratory tests on consistency index, maximum dry density, and unconfined compressive strength were carried out mainly for the purpose of comparing the modifying effect on the composite from fine aggregates of construction waste with that from fly ash. It is mainly concluded from test results that the liquid and plastic limit of the composites increase with the content of two additives. But their maximum dry density all decreases with the additive content. However, fine aggregates of construction waste can increase the optimum water content of the composites, while fly ash on the contrary. Finally, although the two additive all can increase the unconfined compressive strength of composites, fly ash has better effect. The current conclusions are also compared with previous studies, which indicates that the current research results are not completely the same as those from other researchers.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Jun Hu ◽  
Liang Jia ◽  
Wei Wang ◽  
Hong Wei ◽  
Juan Du

Organic sandy soil is widely distributed throughout Hainan Island. This study aimed at addressing the distribution, composition, and formation of organic sandy soil. The engineering properties of organic sandy soil were examined. The experimental results showed that the coefficient of uniformity and coefficient of curvature were 2.07 and 1.25, respectively. The maximum dry density and optimum water content were 1.723 g/cm3 and 12.23%, respectively. The undrained shear strength of organic sandy soil was around 37.5 kPa. The effective stress parameters c and φ were around 4 kPa and 23°, respectively. The compound tangent-exponential model was adopted for capturing the stress-strain behavior of organic sandy soil. As the unconfined compressive strength of the cement-admixed organic sandy soil was much lower than that of ordinary sand, some innovative ground improvement technologies were proposed for stabilizing organic sandy soil, such as thermal pile, fiber, and steel-, bamboo-, and freezing-cemented soil columns. The main purpose of these technologies is to enhance the bearing capacity of organic sandy soil but reduce the usage of cement, as the latter is not an eco-friendly material.


Author(s):  
Nitin Tiwari ◽  
Neelima Satyam

Expansive soil shows dual swell-shrink which is not suitable for the construction. Several mitigating techniques exist to counteract the problem promulgate by expansive clayey soils. This paper explored the penitential mecho-chemical reinforcement of expansive clayey soil to mitigate the effect of upward swelling pressure and heave. The polypropylene fiber is randomly distributed in the soil for mechanical stabilization, and the industrial residual silica fume is used as a chemical stabilizer. The experimental analysis is made in three phases which involved the tests on mechanical reinforced expansive soil using randomly distributed polypropylene fibers with different percentages (0.25%, 0.50%, and 1.00%), and 12mm length. The second phase of experiments carried out on chemical stabilized expansive soil with different percentages (2%, 4% and 8%) of silica and next phase of the experimental focused in the combination of mecho-chemical stabilization of the expansive soil with different combination of silica (i.e., 2%, 4% and 8%) and polypropylene fibers (i.e., 0.25%, 0.50% and 1.00%). Maximum dry density (MDD), optimum moisture content (OMC), liquid limit (LL), plastic limit (PL), plastic index (PI) grain size, and constant volume swelling pressure test were performed on unreinforced and reinforced expansive soil to investigate the effect of polypropylene fiber and silica fume on the engineering properties of expansive clayey soil. The experimental results illustrate that the inclusion of polypropylene fiber has a significant effect on the upward swelling pressure and expansion property of expansive soil. The reduction in the upward swelling pressure and expansion is a function of fiber content. These results also indicated that the use of silica fume caused a reduction in upward swelling potential, and its effect was considerably more than the influence of fiber.


2011 ◽  
Vol 243-249 ◽  
pp. 2586-2590 ◽  
Author(s):  
Xin Ping Li ◽  
Ya Ni Lu ◽  
Xing Hong Wu

In view of the fact that large amounts of tonhaltig phyllite were found along the Shi-Tian expressway line, these soft rocks could not meet the roadbed filling requirements. It was necessary to improve the weathered soft rocks to satisfy the engineering demands. Interior comparative tests research on seven modified methods were carried out such as part in different proportions of cement、sand or stone bits, with soft rock of different water contents being artificial to mix and stir evenly, then unconfined compression strength of the samples at different cement quantity、different curing ages were compared; the optimum water content and and maximum dry density were determined through the compaction test; In addition, the principal effect of CBR value was analyzed. thus the best modified way was defined, the aim was to provide reference of theory and examination for further design and engineering application on weathered rock of expressway roadbed construction.


Author(s):  
Harpreet Singh

Abstract: Soil is the most widely used and basic material for civil engineering. The soil is used for houses, walls, bridges and roads. The Earth provides various types of soil and varies in its properties, scale, composition and textures. The earth's soil is a natural fine grain rock that contains one or more minerals from Earth, which have metal oxides and traces of organic matter. Based on the structure, the clay has quite a range of characteristics. It's slow, and difficult to accelerate, and used for something small. This study is aimed at achieving soil engineering properties for subgrade. In the subgrade construction, waste plastic bottles are used from waste disposal and the application of raw waste soil reinforcement materials and tried to stabilize the clay soil in different strong lime percentages (2 percent, 4 percent, 6 percent, 8 percent, 10 percent, and 12 percent). Testing of the strength of the clay earth, like Maximum Dry Density (MDD) and California Bearing (CBR) was done at different plastic strip percentages. In order to measure improvements in technologies, the clay floor swelling index and the microscopic examination also are performed. Keywords: Clay soil, Lime, Plastic, fiber material.


Author(s):  
Zahid Hussain Shapoo

Abstract: Generally clay exhibits undesirable engineering properties like poor bearing capacity and higher compressibility. Thus the improvement of the soil at site is indispensable. There are many stabilizers to improve the strength of soil like Jute, Gypsum, fly ash, rice husk ash, cement, lime used rubber tyres etc. In the present Study , we added jute and gypsum as stabilizer to improve the properties of clayey soil . Locally available clayey soil is used in this study . The objective of this study is to improve the strength of the clayey soil by making soil-jute and soil-jute-gypsum mixture. six specimens are prepared to investigate the properties of soil out of which three specimens are prepared by adding 1% of jute with varying length of 1cm,2cm and 3cm and the remaining three specimens are prepared by adding 1% jute and gypsum each with varying length of 1cm,2cm and 3cm of jute . Standard proctor test and unconfined compressive strength test are conducted to analyse the optimum moisture content (OMC), Maximum dry density (MDD) and compressive strength of soil mixture.


Geosciences ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 377 ◽  
Author(s):  
Nitin Tiwari ◽  
Neelima Satyam

Expansive soil shows dual swell–shrink which is not suitable for construction. Several mitigating techniques exist to counteract the problem promulgated by expansive clayey soils. This paper explored the potential mecho-chemical reinforcement of expansive clayey soil to mitigate the effect of upward swelling pressure and heave. The polypropylene fiber is randomly distributed in the soil for mechanical stabilization, and the industrial residual silica fume is used as a chemical stabilizer. The experimental analysis was made in three phases which involved tests on mechanically-reinforced expansive soil, using randomly distributed polypropylene fibers with different percentages (0.25%, 0.50%, and 1.00%), and which were 12 mm length. The second phase of experiments was carried out on chemical stabilized expansive soil with different percentages (2%, 4%, and 8%) of silica, and the next phase of the experiment focused on the combination of mecho-chemical stabilization of the expansive soil with different combinations of silica (i.e., 2%, 4%, and 8%) and polypropylene fibers (i.e., 0.25%, 0.50%, and 1.00%). Maximum dry density (MDD), optimum moisture content (OMC), liquid limit (LL), plastic limit (PL), plastic index (PI), grain size, and constant volume swelling pressure tests were performed on unreinforced and reinforced expansive soil, to investigate the effects of polypropylene fiber and silica fume on the engineering properties of expansive clayey soil. The experimental results illustrate that the inclusion of polypropylene fiber has a significant effect on the upward swelling pressure and expansion property of expansive soil. The reduction in the upward swelling pressure and expansion is a function of fiber content. These results also indicated that the use of silica fume caused a reduction in upward swelling potential, and its effect was considerably more than the influence of fiber.


Author(s):  
Ashraf Ghanem ◽  

It may be necessary to improve the engineering properties of clayey soils to make them suitable for construction by using some kind of stabilization methods. Treatment with lime, cement or waste materials such as silica fume (SF) has traditionally been used for the stabilization of clayey soils. The soil chosen in this research was extracted from a site in Edfu- Aswan, Egypt. Investigating the effect of properties of cohesive soils when mixed with SF is the main objective of this study. Silica fume is a mineral made up of ultra-fine solid, amorphous silicon dioxide glass spheres (SiO2) from the metallurgical industries company (E.JS.C) in Edfu. A series of laboratory experiments for samples prepared with different percentages were implemented of SF 0%, 2%, 4%, 6%,8%, and 10%. The results show that the blend will increase the maximum dry density of clayey soils. Their Plasticity Index and the liquid limit would increase, the permeability of clayey soil decreases, the unconfined compression strength will increase. All of these results can be summarized to say that the engineering properties of cohesive soils can be improved by combining Silica Fume and clayey soils together.


2020 ◽  
Vol 1 (3) ◽  
pp. 1-7
Author(s):  
Joseph Ejelikwu Edeh

The functionality of a highway pavement is often judged by the quality and engineering properties of the soil-pavement structures and the materials used to improve the properties of these underlying soils. In this study, crushed concrete waste and carbide waste, whose associated disposal problems constitute environmental hazard, were used for the stabilization of clayey soil using British Standard heavy (Modified Proctor) compaction energy, and used as highway construction material. The various mixes were subjected to particles size analyses, specific gravity, moisture content, Atterberg limits, compaction characteristics, California bearing ratio, unconfined compressive strength test triaxial and water absorption tests. The test results show that the properties of the clayey soil improved with its stabilization with crushed concrete and carbide wastes. The maximum dry density decreased from 1.93 to 1.29 Mg/m3 with corresponding increase in optimum moisture content from 6.0 to 16.6 %, as carbide waste content increased, and crushed concrete waste and clayey soil contents of the mixtures decreased. The maximum California bearing ratio value of 55.01 % (unsoaked and soaked for 24 h) recorded for 25%CS + 75% (75%CCW + 25%CW) mix can be used as subbase material in flexible pavement construction. Further work may assess resilient modulus of this material under cyclic load.


The potential of using iron ore mine waste with an highly compressible clayey soil soil from North Karnataka, India, is investigated in this study. Mining activities lead to the production of waste materials during their extraction and processing stages. The waste maybe in the form of an overburden, waste Rock, Mine Water, or Tailings, depending on the geology, type of processing technology used and the resources mined. The lack of storage space has also been a major concern for the mineral producing agencies, thus paving ways for its better utilization in various construction processes. The collected mine waste was added to expansive soil in different percentages and the mix was tested for Atterberg limits, compaction characteristics, Unconfined compressive strength and California bearing Ratio. It was found that the liquid limit and plasticity index of the soil reduced with addition of mine waste while strength improved. Based on test results of maximum dry density and unconfined compressive strength, a mix of 40% mine waste with 60% expansive clayey soil is recommended for low cost roads. Blending mine waste with expansive soil paves way for sustainable construction besides economic benefits


Sign in / Sign up

Export Citation Format

Share Document